Skip to main content
Log in

Interzeolite conversion of HY to hierarchical HZSM-5 catalyst via an ionothermal route and its excellent catalytic performance in methanol-to-aromatics reaction

  • Published:
Journal of Porous Materials Aims and scope Submit manuscript

Abstract

Currently, synthesizing zeolites with specific physicochemical properties in a more environmentally benign and safe way is challenging. Herein we report a novel ionothermal route of preparing HZSM-5 zeolite, which is featured by the direct interzeolite transformation of HY to HZSM-5. The appropriate synthetic conditions of this HZSM-5 material are refined. Although performing a series of optimization, the resultant product still contains minor (NH4)3AlF6 impurity. Pure HZSM-5 phase with high relative crystallinity can be obtained through successive calcination and acid-washing treatments towards the as-made sample. SEM–EDS characterization and nitrogen physisorption measurement reveal that this pure HZSM-5 sample is composed of classical coffin-like crystals with a low Si/Al ratio and evident hierarchical micro-mesoporous structure. Benefiting from its unique physicochemical properties, this pure HZSM-5 catalyst exhibits more superior methanol-to-aromatics performance than those of the state-of-the-art HZSM-5 and Metal/ZSM-5 catalysts evaluated under similar reaction conditions. It can be anticipated that this HZSM-5 material may be applied in other industrially relevant reactions owing to its particular structure and properties.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig.1
Fig. 2
Fig. 3
Fig.4
Fig.5
Fig.6
Fig. 7

Similar content being viewed by others

Data availability

The datasets generated during and/or analysed during the current study are available from the corresponding author on reasonable request.

Code availability

Not Applicable.

References

  1. P. del Campo, C. Martinez, A. Corma, Chem. Soc. Rev. 50, 8511–8595 (2021)

    Article  PubMed  Google Scholar 

  2. M. Dusselier, M.E. Davis, Chem. Rev. 118, 5265–5329 (2018)

    Article  CAS  PubMed  Google Scholar 

  3. E.R. Cooper, C.D. Andrews, P.S. Wheatley, P.B. Webb, P. Wormald, R.E. Morris, Nature 430, 1012–1016 (2004)

    Article  CAS  PubMed  Google Scholar 

  4. Q.S. Huo, R.R. Xu, J. Chem. Soc.-Chem. Commun. (1992). https://doi.org/10.1039/c39920000168

    Article  Google Scholar 

  5. N. Eng-Poh, D. Chateigner, T. Bein, V. Valtchev, S. Mintova, Science 335, 70–73 (2012)

    Article  CAS  Google Scholar 

  6. L. Ren, Q. Wu, C. Yang, L. Zhu, C. Li, P. Zhang, H. Zhang, X. Meng, F.-S. Xiao, J. Am. Chem. Soc. 134, 15173–15176 (2012)

    Article  CAS  PubMed  Google Scholar 

  7. R.M. Barrer, J. Chem. Soc. 2, 127–132 (1948)

    Article  CAS  PubMed  Google Scholar 

  8. Lewis GJ, Miller MA, Moscoso JG, Wilson BA, Knight LM, Wilson ST in: Studies in Surface Science and Catalysis, Vol. 154, eds. E. van Steen, I.M. Claeys and L.H. Callanan (Elsevier, 2004).

  9. G. Feng, P. Cheng, W. Yan, M. Boronat, X. Li, J.-H. Su, J. Wang, Y. Li, A. Corma, R. Xu, J. Yu, Science 351, 1188–1191 (2016)

    Article  CAS  PubMed  Google Scholar 

  10. Z.D. Liu, T. Wakihara, K. Oshima, D. Nishioka, Y. Hotta, S.P. Elangovan, Y. Yanaba, T. Yoshikawa, W. Chaikittisilp, T. Matsuo, T. Takewaki, T. Okubo, Angew. Chem.-Int. Ed. 54, 5683–5687 (2015)

    Article  CAS  Google Scholar 

  11. P. Chu, F.G. Dwyer, J.C. Vartuli, Crystallization method employing microwave radiation (Mobil Oil Corporation (New York, NY), United States, 1988)

    Google Scholar 

  12. Ö. Andaç, M. Tatlıer, A. Sirkecioğlu, I. Ece, A. Erdem-Şenatalar, Microporous Mesoporous Mater. 79, 225–233 (2005)

    Article  CAS  Google Scholar 

  13. W.J. Roth, P. Nachtigall, R.E. Morris, P.S. Wheatley, V.R. Seymour, S.E. Ashbrook, P. Chlubná, L. Grajciar, M. Položij, A. Zukal, O. Shvets, J. Čejka, Nat. Chem. 5, 628–633 (2013)

    Article  CAS  PubMed  Google Scholar 

  14. M. Mazur, P.S. Wheatley, M. Navarro, W.J. Roth, M. Položij, A. Mayoral, P. Eliášová, P. Nachtigall, J. Čejka, R.E. Morris, Nat. Chem. 8, 58–62 (2016)

    Article  CAS  PubMed  Google Scholar 

  15. M.A. Alabdullah, A.R. Gomez, J. Vittenet, A. Bendjeriou-Sedjerari, W. Xu, I.A. Abba, J. Gascon, ACS Catal. 10, 8131–8140 (2020)

    Article  CAS  Google Scholar 

  16. S. Goel, S.I. Zones, E. Iglesia, Chem. Mater. 27, 2056–2066 (2015)

    Article  CAS  Google Scholar 

  17. W. Qin, R. Jain, F.C. Robles Hernández, J.D. Rimer, Chem. A— Eur. J. 25, 5893–5898 (2019)

    Article  CAS  Google Scholar 

  18. M.B. dos Santos, K.C. Vianna, H.O. Pastore, H.M.C. Andrade, A.J.S. Mascarenhas, Microporous Mesoporous Mater. 306, 110413 (2020)

    Article  CAS  Google Scholar 

  19. S. Goel, S.I. Zones, E. Iglesia, J. Am. Chem. Soc. 136, 15280–15290 (2014)

    Article  CAS  PubMed  Google Scholar 

  20. R. Xu, W. Zhang, J. Xu, Z. Tian, F. Deng, X. Han, X. Bao, J. Phys. Chem. C 117, 5848–5854 (2013)

    Article  CAS  Google Scholar 

  21. Q. Wu, X. Hong, L. Zhu, X. Meng, S. Han, J. Zhang, X. Liu, C. Jin, F.-S. Xiao, Microporous Mesoporous Mater. 286, 163–168 (2019)

    Article  CAS  Google Scholar 

  22. X. Xiong, D. Yuan, Q. Wu, F. Chen, X. Meng, R. Lv, D. Dai, S. Maurer, R. McGuire, M. Feyen, U. Mueller, W. Zhang, T. Yokoi, X. Bao, H. Gies, B. Marler, D.E. De Vos, U. Kolb, A. Moini, F.-S. Xiao, J. Mater. Chem. A. 5, 9076–9080 (2017)

    Article  CAS  Google Scholar 

  23. S. Miyagawa, K. Miyake, Y. Hirota, N. Nishiyama, M. Miyamoto, Y. Oumi, S. Tanaka, Microporous Mesoporous Mater. 278, 219–224 (2019)

    Article  CAS  Google Scholar 

  24. H. Xu, J. Zhu, J. Qiao, X. Yu, N.-B. Sun, C. Bian, J. Li, L. Zhu, Microporous Mesoporous Mater. 312, 110736 (2021)

    Article  CAS  Google Scholar 

  25. C. Lee, S. Lee, W. Kim, R. Ryoo, Catal. Today 303, 143–149 (2018)

    Article  CAS  Google Scholar 

  26. X. Niu, J. Gao, Q. Miao, M. Dong, G. Wang, W. Fan, Z. Qin, J. Wang, Microporous Mesoporous Mater. 197, 252–261 (2014)

    Article  CAS  Google Scholar 

  27. T. Fu, J. Shao, Z. Li, Appl. Catal. B: Environ. 291, 1298 (2021)

    Article  CAS  Google Scholar 

  28. N. Wang, J. Li, W. Sun, Y. Hou, L. Zhang, X. Hu, Y. Yang, X. Chen, C. Chen, B. Chen, W. Qian, Angew. Chem. Int. Ed. (2022). https://doi.org/10.1002/anie.202114786

    Article  Google Scholar 

  29. T. Sano, M. Itakura, M. Sadakane, J. Jpn. Petrol. Inst. 56, 183–197 (2013)

    Article  CAS  Google Scholar 

  30. R. Xu, W. Pang, J. Yu, Q. Huo, J. Chen, Chemistry of zeolites and related porous materials (Wiley, Chichester, 2007)

    Book  Google Scholar 

  31. J. Devos, M.A. Shah, M. Dusselier, RSC Adv. 11, 26188–26210 (2021)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. P. Zhang, S. Li, P. Guo, X. Zhao, Langmuir 36, 6160–6168 (2020)

    Article  CAS  PubMed  Google Scholar 

  33. P.T. Ngo, P.N.X. Vo, L.P. Trinh-Le, D.T. Pham, P.D. Phan, C.V. Cao, T.V. Tran, T.N. Luong, Q.L.M. Ha, N. Le-Phuc, Microporous Mesoporous Mater. 315, 110928 (2021)

    Article  CAS  Google Scholar 

  34. Z. Han, F. Zhang, X. Zhao, Microporous Mesoporous Mater. 290, 109679 (2019)

    Article  CAS  Google Scholar 

  35. Yu J, in: Studies in Surface Science and Catalysis, Vol. 168, eds. J. Čejka, H. van Bekkum, A. Corma and F. Schüth (Elsevier, 2007).

  36. B. Bauer, H. Strathmann, F. Effenberger, Desalination 79, 125–144 (1990)

    Article  CAS  Google Scholar 

  37. L. Xu, Y. Yuan, Q. Han, L. Dong, L. Chen, X. Zhang, L. Xu, Catal. Sci. Technol. 10, 7904–7913 (2020)

    Article  CAS  Google Scholar 

  38. D.V. Bruter, V.S. Pavlov, I.I. Ivanova, Pet. Chem. 61, 251–275 (2021)

    Article  CAS  Google Scholar 

  39. Y. Jin, Q. Sun, G. Qi, C. Yang, J. Xu, F. Chen, X. Meng, F. Deng, F.S. Xiao, Angew. Chem. 52, 9172–9175 (2013)

    Article  CAS  Google Scholar 

  40. M. Choi, R. Srivastava, R. Ryoo, Chem. Commun. (2006). https://doi.org/10.1039/b612265e

    Article  Google Scholar 

  41. L.-H. Chen, X.-Y. Li, G. Tian, Y. Li, J.C. Rooke, G.-S. Zhu, S.-L. Qiu, X.-Y. Yang, B.-L. Su, Angew. Chem. Int. Ed. 50, 11156–11161 (2011)

    Article  CAS  Google Scholar 

  42. Y. Ni, A. Sun, X. Wu, G. Hai, J. Hu, T. Li, G. Li, Microporous Mesoporous Mater. 143, 435–442 (2011)

    Article  CAS  Google Scholar 

  43. Y. Jia, J. Wang, K. Zhang, W. Feng, S. Liu, C. Ding, P. Liu, Microporous Mesoporous Mater. 247, 103–115 (2017)

    Article  CAS  Google Scholar 

  44. Y. Jia, J. Wang, K. Zhang, G. Chen, Y. Yang, S. Liu, C. Ding, Y. Meng, P. Liu, Powder Technol. 328, 415–429 (2018)

    Article  CAS  Google Scholar 

  45. Y. Jia, J. Wang, K. Zhang, S. Liu, G. Chen, Y. Yang, C. Ding, P. Liu, Catal. Sci. Technol. 7, 1776–1791 (2017)

    Article  CAS  Google Scholar 

  46. A.A. Rownaghi, J. Hedlund, Ind. Eng. Chem. Res. 50, 11872–11878 (2011)

    Article  CAS  Google Scholar 

  47. D.T. Bregante, D.S. Potts, O. Kwon, E.Z. Ayla, J.Z. Tan, D.W. Flaherty, Chem. Mater. 32, 7425–7437 (2020)

    Article  CAS  Google Scholar 

  48. I.C. Medeiros-Costa, E. Dib, N. Nesterenko, J.-P. Dath, J.-P. Gilson, S. Mintova, Chem. Soc. Rev. 50, 11156–11179 (2021)

    Article  CAS  PubMed  Google Scholar 

  49. T. Yokoi, H. Mochizuki, S. Namba, J.N. Kondo, T. Tatsumi, J. Phys. Chem. C 119, 15303–15315 (2015)

    Article  CAS  Google Scholar 

  50. M. Yabushita, R. Osuga, A. Muramatsu, CrystEngComm 23, 6226–6233 (2021)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Grant No. 21666019, 22168022) and The Youth Natural Science Foundation of Gansu Province (Grant No. 20JR10RA189). We cordially thank the Reviewers and Editors for providing us with valuable comments and suggestions.

Funding

See Acknowledgements part.

Author information

Authors and Affiliations

Authors

Contributions

Mr. ZY wrote the original draft. Ms. YL conducted the material syntheses. Dr. DW analyzed the XRD data. Dr. XL conducted the SEM analysis. Dr. HL measured the catalytic performance. Prof. XZ proposed the project and revised the draft.

Corresponding author

Correspondence to Xinhong Zhao.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, Z., Li, Y., Wang, D. et al. Interzeolite conversion of HY to hierarchical HZSM-5 catalyst via an ionothermal route and its excellent catalytic performance in methanol-to-aromatics reaction. J Porous Mater 29, 1039–1047 (2022). https://doi.org/10.1007/s10934-022-01227-z

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10934-022-01227-z

Keywords

Navigation