Skip to main content
Log in

Layered zinc hydroxide as vehicle for drug delivery systems: a critical review

  • Published:
Journal of Porous Materials Aims and scope Submit manuscript

Abstract

Since nanoparticle-based treatment methods could decrease the side effects of conventional therapeutics; they have been considered as important approaches. One of the main drug delivery systems associated with easy preparation, decreased cytotoxicity, appropriate biocompatibility and drug loading capacity, and reduced cost is inorganic layered zinc hydroxides (LZH) as anionic clays, which is a member of layered hydroxide salts. It is found that LZH contains a layered structure and high surface-to-volume ratio; therefore, it could lead to the treatment agent’s interpolation and deliverance to the desired point and consequently, reduction of side effects. It should also be noted that the prevalence of drug release could be reduced as a result of the continuous intercalation of drug delivery. The current study investigates the promotions of LZH composition, characteristics, development manner, and drug administration. Furthermore, it represents useful data regarding LZH and drug delivery.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. M. Hrubý, S.K. Filippov, P. Štěpánek, Smart polymers in drug delivery systems on crossroads: which way deserves following? Eur. Polym. J. 65, 82–97 (2015)

    Google Scholar 

  2. H. Zhang, T. Fan, W. Chen, Y. Li, B. Wang, Recent advances of two-dimensional materials in smart drug delivery nanosystems. Bioact. Mater. 5, 1071–1086 (2020)

    PubMed  PubMed Central  Google Scholar 

  3. D. Liu, F. Yang, F. Xiong, N. Gu, The smart drug delivery system and its clinical potential. Theranostics 76(9), 1306–1323 (2016)

    Google Scholar 

  4. J. Kolosnjaj-Tabi, L. Gibot, I. Fourquaux, M. Golzio, M.-P. Rols, Electric field-responsive nanoparticles and electric fields: physical, chemical, biological mechanisms and therapeutic prospects. Adv. Drug Deliv. Rev. 138, 56–67 (2018)

    PubMed  Google Scholar 

  5. A. Ahmadi, S. Hosseini-Nami, Z. Abed, J. Beik, L. Aranda-Lara, H. Samadian, E. Morales-Avila, M. Jaymand, A. Shakeri-Zadeh, Recent advances in ultrasound-triggered drug delivery through lipid-based nanomaterials. Drug Discov. Today 25(12), 2182–2200 (2020)

    CAS  PubMed  Google Scholar 

  6. F. Xiong, S. Huang, N. Gu, Magnetic nanoparticles: recent developments in drug delivery system. Drug Dev. Ind. Pharm. 44(5), 697–706 (2018)

    CAS  PubMed  Google Scholar 

  7. V.P. Torchilin, Multifunctional, stimuli-sensitive nanoparticulate systems for drug delivery. Nat. Rev. Drug Discov. 13, 813–827 (2014)

    CAS  PubMed  PubMed Central  Google Scholar 

  8. M. Wang, M. Thanou, Targeting nanoparticles to cancer. Pharmacol. Res. 62(2), 90–99 (2010)

    CAS  PubMed  Google Scholar 

  9. D. Bobo, K.J. Robinson, J. Islam, K.J. Thurecht, S.R. Corrie, Nanoparticle-based medicines: a review of FDA-approved materials and clinical trials to date. Pharm Res. 33(10), 2373–2387 (2016)

    CAS  PubMed  Google Scholar 

  10. M. Rezaeisadat, A.-K. Bordbar, R. Omidyan, Molecular dynamics simulation study of curcumin interaction with nano-micelle of PNIPAAm-b-PEG co-polymer as a smart efficient drug delivery system. J. Mol. Liq. 332, 115862 (2021)

    CAS  Google Scholar 

  11. H.P. James, R. John, A. Alex, K.R. Anoop, Smart polymers for the controlled delivery of drugs—a concise overview. Acta Pharm. Sin. B 4(2), 120–127 (2014)

    Google Scholar 

  12. S. Liu, S.A. Qamar, M. Qamar, K. Basharat, M. Bilal, Engineered nanocellulose-based hydrogels for smart drug delivery applications. Int. J. Biol. Macromol. 181, 275–290 (2021)

    CAS  PubMed  Google Scholar 

  13. T. Li, S. Takeoka, Smart liposomes for drug delivery, in Smart nanoparticles for biomedicine. ed. by G. Ciofani (Elsevier, Amsterdam, 2018), pp. 31–47

    Google Scholar 

  14. S. Chahardahmasoumi, M.N. Sarvi, S.A.H. Jalali, Modified montmorillonite nanosheets as a nanocarrier with smart pH-responsive control on the antimicrobial activity of tetracycline upon release. Appl. Clay Sci. 178, 105135 (2019)

    CAS  Google Scholar 

  15. H. Nabipour, B. Soltani, N. Ahmadi Nasab, Gentamicin loaded Zn2(bdc)2(dabco) frameworks as efficient materials for drug delivery and antibacterial activity. J. Inorg. Organomet. Polym. Mater. 28, 1206–1213 (2018)

    CAS  Google Scholar 

  16. B. Soltani, H. Nabipour, N. Ahmadi Nasab, Efficient storage of gentamicin in nanoscale zeolitic imidazolate framework-8 nanocarrier for pH-resposive drug release. J. Inorg. Organomet. Polym. Mater. 28, 1090–1097 (2017)

    Google Scholar 

  17. H. Nabipour, M.H. Sadr, G.R. Bardajee, Synthesis and characterization of nanoscale zeolitic imidazolate frameworks with ciprofloxacin and their applications as antimicrobial agents. New J. Chem. 41(15), 7364–7370 (2017)

    CAS  Google Scholar 

  18. M.J. Haney, N.L. Klyachko, Y. Zhao, R. Gupta, E.G. Plotnikova, Z. He, T. Patel, A. Piroyan, M. Sokolsky, A.V. Kabanov, E.V. Batrakova, Exosomes as drug delivery vehicles for Parkinson’s disease therapy. J. Control. Release 207, 18–30 (2015)

    CAS  PubMed  PubMed Central  Google Scholar 

  19. S.P. Newman, W. Jones, Comparative study of some layered hydroxide salts containing exchangeable interlayer anions. J. Solid State Chem. 148, 26–40 (1999)

    CAS  Google Scholar 

  20. F. Wypych, K.G. Satyanarayana, Clay Surfaces: Fundamentals and Applications (Elsevier Academic Press, Amsterdam, 2004), p. 345

    Google Scholar 

  21. L. Costa, A.C. Gomes, R.C. Pereira, M. Pillinger, I.S. Gonçalves, M.P. Orcid, J.S. Seixas de Melo, Interactions and supramolecular organization of sulfonated indigo and thioindigo dyes in layered hydroxide hosts. Langmuir 34(1), 453–464 (2018)

    CAS  PubMed  Google Scholar 

  22. R. Rojas, Y.G. Linck, S.L. Cuffini, G.A. Monti, C.E. Giacomelli, Structural and physicochemical aspects of drug release from layered double hydroxides and layered hydroxide salts. Appl. Clay Sci. 109–110, 119–126 (2015)

    Google Scholar 

  23. V. Rives, M. Del Arco, C. Martín, Layered double hydroxides as drug carriers and for controlled release of non-steroidal antiinflammatory drugs (NSAIDs): a review. J. Control. Release 169, 28–39 (2013)

    CAS  PubMed  Google Scholar 

  24. R. Rojas, M.C. Palena, A.F. Jimenez-Kairuz, R.H. Manzo, C.E. Giacomelli, Modeling drug release from a layered double hydroxide–ibuprofen complex. Appl. Clay Sci. 62–63, 15–20 (2012)

    Google Scholar 

  25. S. Ghamami, M. Golzani, A. Lashgari, New inorganic-based nanohybrids of layered zinc hydroxide/Parkinson’s disease drug and its chitosan biopolymer nanocarriers with controlled release rate. J. Incl. Phenom. Macrocycl. Chem. 86, 67–78 (2016)

    CAS  Google Scholar 

  26. J. Yang, S.Y. Lee, Y.S. Han, K.C. Park, J.H. Choy, Efficient transdermal penetration and improved stability of L-ascorbic acid encapsulated in an inorganic nanocapsule. Bull. Korean Chem. Soc. 24(4), 493–503 (2003)

    Google Scholar 

  27. P. Gunawan, R. Xu, Direct control of drug release behavior from layered double hydroxides through particle interactions. J. Pharm. Sci. 97, 4367–4378 (2008)

    CAS  PubMed  Google Scholar 

  28. H. Nabipour, M. Hossaini Sadr, B. Soltani, Synthesis, identification and in vitro drug release of layered zinc hydroxide-gemifloxacin nanohybrids. J. Incl. Phenom. Macrocycl. Chem. 85, 261–269 (2016)

    CAS  Google Scholar 

  29. R.M.R. Bull, C. Markland, G.R. Williams, D. O’Hare, Hydroxy double salts as versatile storage and delivery matrices. J. Mater. Chem. 21, 1822 (2011)

    CAS  Google Scholar 

  30. B. Saifullah, P. Arulselvan, M.E.E. Zowalaty, S. Fakurazi, T.J. Webster, B.M. Geilich, M.Z. Hussein, Development of a biocompatible nanodelivery system for tuberculosis drugs based on isoniazid-Mg/Al layered double hydroxide. Int. J. Nanomed. 9, 4749–4762 (2014)

    Google Scholar 

  31. B. Soltani, H. Nabipour, N. Ahmadi Nasab, Fabrication, controlled release, and kinetic studies of indomethacin-layered zinc hydroxide nanohybrid and its effect on the viability of HFFF2. J. Dispers. Sci. Technol. 39(8), 1200–1207 (2018)

    CAS  Google Scholar 

  32. E. Conterosito, G. Croce, L. Palin, C. Pagano, L. Perioli, D. Viterbo, E. Boccaleri, G. Paula, M. Milanesio, Structural characterization and thermal and chemical stability of bioactive molecule–hydrotalcite (LDH) nanocomposites. Phys. Chem. Chem. Phys. 15, 13418 (2013)

    CAS  PubMed  Google Scholar 

  33. M. Louer, D. Louer, D. Grandjean, Etude structurale des hydroxynitrates de nickel et de zinc. I. Classification structural [structural studies of hydroxynitrates nickel and zinc. I. structural classification]. Acta Cryst. B 29(8), 1696–1703 (1973)

    CAS  Google Scholar 

  34. W. Stahlin, H.R. Oswald, The crystal structure of zinc hydroxide nitrate Zn5(OH)8 (NO3) 2.2 H2O. Acta Cryst. B 26(6), 860–863 (1970)

    Google Scholar 

  35. J. Demel, P. Kubát, I. Jirka, P. Kovář, M. Pospíšil, K. Lang, Inorganic−organic hybrid materials: layered zinc hydroxide salts with intercalated porphyrin sensitizers. J. Phys. Chem. C 114, 16321–16328 (2010)

    CAS  Google Scholar 

  36. S.N.M. Sharif, N. Hashim, I.M. Isa, S.A. Bakar, M.I. Saidin, M.S. Ahmad, M. Mamat, M.Z. Hussein, Surfactant-assisted imidacloprid intercalation of layered zinc hydroxide nitrate: synthesis, characterization and controlled release formulation. J. Porous Mater. 27, 473–486 (2020)

    CAS  Google Scholar 

  37. C.S. Cordeiro, G.G.C. Arizaga, L.P. Ramos, F. Wypych, A new zinc hydroxide nitrate heterogeneous catalyst for the esterification of free fatty acids and the transesterification of vegetable oils. Catal. Commun. 9, 2140–2143 (2008)

    CAS  Google Scholar 

  38. S. Rouba, P. Rabu, M. Drillon, Synthesis and characterization of new quasi-one-dimensional Mn(II) hydroxynitrates (MnxZn1-x)(OH)(NO3)H2O (x = 0.53, 1.00). J. Solid State Chem. 118, 28–32 (1995)

    CAS  Google Scholar 

  39. F. Cavani, F. Trifirò, A. Vaccari, Hydrotalcite-type anionic clays: preparation, properties and applications. Catal. Today. 11, 173–301 (1991)

    CAS  Google Scholar 

  40. M. Rajamathi, P.V. Kamath, Urea hydrolysis of cobalt(II) nitrate melts: synthesis of novel hydroxides and hydroxynitrates. Int. J. Inorg. Mater. 3, 901–906 (2001)

    CAS  Google Scholar 

  41. C. Guadalupe, K.G. Arizaga, F. Satyanarayana, Wypych, layered hydroxide salts: synthesis, properties and potential applications. Solid State Ion. 178, 1143–1162 (2007)

    Google Scholar 

  42. N. Morel-Desrosiers, J. Pisson, Y. Israeli, C. Taviot-Gueho, J.P. Besse, J.P. Morel, Intercalation of dicarboxylate anions into a Zn–Al–Cl layered double hydroxide: microcalorimetric determination of the enthalpies of anion exchange. J. Mater. Chem. 13, 2582–2585 (2003)

    CAS  Google Scholar 

  43. C. Israëli, J.-P. Taviot-Guého, J.-P. Besse, J.-P. Morel, N. Morel-Desrosiers, Thermodynamics of anion exchange on a chloride-intercalated zinc–aluminum layered double hydroxide: a microcalorimetric study. J. Chem. Soc. Dalton Trans. 5, 791–796 (2000)

    Google Scholar 

  44. B. Saifullah, M.Z. Hussein, S.H. Hussein-Al-Ali, P. Arulselvan, S. Fakurazi, Sustained release formulation of an anti-tuberculosis drug based on para-amino salicylic acid-zinc layered hydroxide nanocomposite. Chem. Cent. J. 7(1), 72 (2013)

    PubMed  PubMed Central  Google Scholar 

  45. K. Zhang, Z.P. Xu, J. Lu, Z.Y. Tang, H.J. Zhao, D.A. Good, M.Q. Wei, Potential for layered double hydroxides-based, innovative drug delivery systems. Int. J. Mol. Sci. 15(5), 7409–7428 (2014)

    CAS  PubMed  PubMed Central  Google Scholar 

  46. L. Yan, S. Gonca, G. Zhu, W. Zhang, X. Chen, Layered double hydroxide nanostructures and nanocomposites for biomedical applications. J. Mater. Chem. B 7, 5583–5601 (2019)

    CAS  PubMed  Google Scholar 

  47. X. Bi, H. Zhang, L. Dou, Layered double hydroxide-based nanocarriers for drug delivery. Pharmaceutics 6(2), 298–332 (2014)

    CAS  PubMed  PubMed Central  Google Scholar 

  48. M.Z. Hussein, S.H. Al Ali, Z. Zainal, M.N. Hakim, Development of antiproliferative nanohybrid compound with controlled release property using ellagic acid as the active agent. Int. J. Nanomed. 6, 1373–1383 (2011)

    CAS  Google Scholar 

  49. F. Barahuie, M.Z. Hussein, S. Abd Gani, S. Fakurazi, Z. Zainal, Anticancer nanodelivery system with controlled release property based on protocatechuate–zinc layered hydroxide nanohybrid. Int. J. Nanomed. 9(1), 3137–3149 (2014)

    Google Scholar 

  50. F. Barahuie, M.Z. Hussein, P. Arulselvan, S. Fakurazi, Z. Zainal, Development of the anticancer potential of a chlorogenate-zinc layered hydroxide nanohybrid with controlled release property against various cancer cells. Sci. Adv. Mater. 5(12), 1983–1993 (2013)

    CAS  Google Scholar 

  51. N. Hashim, S.N.M. Sharif, Z. Muda, N.M. Ali, S.A. Bakar, S.M. Sidik, Preparation of zinc layered hydroxide-ferulate and coated zinc layered hydroxide-ferulate nanocomposites for controlled release of ferulic acid. Mater. Res. Innov. 8917, 1–13 (2018)

    Google Scholar 

  52. A.F. Latip, M.Z. Hussein, J. Stanslas, C.C. Wong, R. Adnan, Release behavior and toxicity profiles towards A549 cell lines of ciprofloxacin from its layered zinc hydroxide intercalation compound. Chem. Cent. J. 7, 119 (2013)

    PubMed  PubMed Central  Google Scholar 

  53. B. Saifullah, P. Arulselvan, M.E. El Zowalaty, Sh. Fakurazi, T.J. Webster, B. Geilich, M.Z. Hussein, Development of a highly biocompatible antituberculosis nanodelivery formulation based on para-aminosalicylic acid-zinc layered hydroxide nanocomposites. Sci. World J. 2014, 1–12 (2014)

    Google Scholar 

  54. B. Saifullah, M.Z. Hussein, S.H. Hussein-Al-Ali, P. Arulselvan, S. Fakurazi, Sustained release formulation of an anti-tuberculosis drug based on para-amino salicylic acid-zinc layered hydroxide nanocomposite. Chem. Cent. J. 7, 72–83 (2013)

    PubMed  PubMed Central  Google Scholar 

  55. S. Hasan, H. Al Ali, M. Al-Qubaisi, M. Zobir Hussein, M. Ismail, Z. Zainal, M. Nazrul Hakim, Controlled-release formulation of antihistamine based on cetirizine zinc-layered hydroxide nanocomposites and its effect on histamine release from basophilic leukemia (RBL-2H3) cells. Int. J. Nanomed. 7, 3351–3363 (2012)

    CAS  Google Scholar 

  56. V. Rives, M. del Arco, C. Martín, Layered double hydroxides as drug carriers and for controlled release of non-steroidal antiinflammatory drugs (NSAIDs): a review. J. Control. Release 169, 28–39 (2013)

    CAS  PubMed  Google Scholar 

  57. M. Ramli, M.Z. Hussein, K. Yusoff, Preparation and characterization of an anti-inflammatory agent based on a zinc-layered hydroxide-salicylate nanohybrid and its effect on viability of vero-3 cells. Int. J. Nanomed. 8, 297–306 (2013)

    Google Scholar 

  58. H. Nabipour, S.H. Jafari, E. Naderikalali, M. Mozafari, Mefenamic acid-layered zinc hydroxide nanohybrids: a new platform to elaborate drug delivery systems. J. Inorg. Organomet. Polym. (2018). https://doi.org/10.1007/s10904-018-0998-1

    Article  Google Scholar 

  59. H. Nabipour, M.H. Sadr, Layered zinc hydroxide–ibuprofen nanohybrids: synthesis and characterization. Bull. Mater. Sci. 38(6), 1561–1567 (2015)

    CAS  Google Scholar 

  60. H. Nabipour, M.H. Sadr, Controlled release of diclofenac, an anti-inflammatory drug by nanocompositing with layered zinc hydroxide. J. Porous Mater. 22, 447–454 (2015)

    CAS  Google Scholar 

  61. H. Nabipour, Design and evaluation of non-steroidal anti-inflammatory drug intercalated into layered zinc hydroxide as a drug delivery system. J. Inorg. Organomet. Polym. 29, 1807–1817 (2019)

    CAS  Google Scholar 

  62. V. Ruiz, M.E. Becerra, O. Giraldo, Structural, thermal, and release properties of hybrid materials based on layered zinc hydroxide and caffeic Acid. Nanomaterials 10, 163 (2020)

    CAS  PubMed Central  Google Scholar 

  63. N.A.R.N. Abed, S.M. Abudoleh, I.D. Alshawabkeh, A.R.N. Abed, R.K.A. Abuthawabeh, S.H.H.A. Ali, Aspirin drug intercalated into zinc-layered hydroxides as nanolayers: structure and in vitro release. Nano Hybrids Compos. 18, 42–52 (2017)

    Google Scholar 

  64. S.B. Khan, K.A. Alamry, N.A. Alyahyawi, A.M. Asiri, M.N. Arshad, H.M. Marwani, Nanohybrid based on antibiotic encapsulated layered double hydroxide as a drug delivery system. Appl. Biochem. Biotechnol. 175(3), 1412–1428 (2015)

    CAS  PubMed  Google Scholar 

  65. S.H. Hussein Al Ali, M. Al-Qubaisi, M. El Zowalaty, M.Z. Hussein, M. Ismail, Antimicrobial activity of hippurate nanocomposite and its cytotoxicity effect in combination with cytarabine against HL-60. J. Nanomater. 203, 843647 (2013)

    Google Scholar 

  66. H. Nabipour, M.H. Sadr, N. Thomas, Synthesis, characterisation and sustained release properties of layered zinc hydroxide intercalated with amoxicillin trihydrate. J. Exp. Nanosci. 10(16), 1269–1284 (2015)

    CAS  Google Scholar 

  67. G. Rezaie Behbahani, M. Hossaini Sadr, H. Nabipour, Comparison of antimicrobial properties of nano quinolone with its microscale effect. Biophys. Rev. Lett. 8, 51 (2013)

    Google Scholar 

  68. H. Nabipour, M.H. Sadr, N. Thomas, Synthesis, controlled release and antibacterial studies of nalidixic acid–zinc hydroxide nitrate nanocomposites. New J. Chem. 40, 238–244 (2016)

    CAS  Google Scholar 

  69. Y.-M. Zhang, C.O. Rock, Membrane lipid homeostasis in bacteria. Nat. Rev. Microbiol. 6(3), 222–233 (2008)

    PubMed  Google Scholar 

  70. W. Zhuang, D. Yuan, J.-R. Li, Z. Luo, H.-C. Zhou, S. Bashir, J. Liu, Highly potent bactericidal activity of porous metal-organic frameworks. Adv. Healthc. Mater. 1(2), 225–238 (2012)

    CAS  PubMed  Google Scholar 

  71. A.C.T. Cursino, J.E.F.D.C. Gardolinski, F. Wypych, Intercalation of anionic organic ultraviolet ray absorbers into layered zinc hydroxide nitrate. J. Colloid Interface Sci. 347, 49–55 (2010)

    CAS  PubMed  Google Scholar 

  72. S.M. Mohsin, M.Z. Hussein, S.H. Sarijo, S. Fakurazi, P. Arulselvan, T.Y. Hin, Synthesis of (cinnamate-zinc layered hydroxide) intercalation compound for sunscreen application. Chem. Cent. J. 7, 26 (2013)

    PubMed  PubMed Central  Google Scholar 

  73. N. Feliu, D. Docter, M. Heine, P. Del Pino, S. Ashraf, J. Kolosnjaj-Tabi, P. Macchiarini, P. Nielsen, D. Alloyeau, F. Gazeau, R.H. Stauber, W.J. Parak, In vivo degeneration and the fate of inorganic nanoparticles. Chem. Soc. Rev. 45, 2440–2457 (2016)

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We gratefully acknowledge financial support from the National Natural Science Foundation of China (Grant No.: 22050410269).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hafezeh Nabipour.

Ethics declarations

Conflict of interest

The authors declare no competing financial interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nabipour, H., Hu, Y. Layered zinc hydroxide as vehicle for drug delivery systems: a critical review. J Porous Mater 29, 341–356 (2022). https://doi.org/10.1007/s10934-021-01171-4

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10934-021-01171-4

Keywords

Navigation