Skip to main content
Log in

Epoxidation of alkene using bi-functional metal oxide supported SBA-16 catalyst

  • Published:
Journal of Porous Materials Aims and scope Submit manuscript

Abstract

Three dimensional (3D) cubic cage like Im3m mesoporous SBA-16 was synthesized by one pot hydrothermal method using Pluronic F127 as structure directing agent and Tetraethylorthosilicate as silica precursor. Different weight percentages (1 wt%, 3 wt% and 5 wt%) of manganese nitrate tetrahydrate were homogeneously mixed with the same weight percentages of ammonium tungsten oxide hydrate respectively and dispersed on SBA-16 by incipient wet impregnation method. Structural identification and the particle arrangement for as-synthesized SBA-16 materials were analyzed using low and high angle X-ray diffraction. Surface area, pore-diameter, pore volume and pore size distribution were observed using the N2 adsorption isotherm technique with H2 hysteresis loop. The topography of the catalyst was characterized by TEM. The chemical valence state and elemental composition were characterized by high-resolution XPS respectively. The thermal stability of the catalyst was characterized by Thermogravimetric analysis. The synthesized materials MnWO4/SBA-16 were tested for epoxidation of styrene with environmentally benign TBHP as an oxidant. Various parametric investigations were performed and reported. From the above investigation, it is inferred that the major product of styrene oxide was obtained with maximum selectivity of about 75% using MnWO4 (3 wt%)/SBA-16.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Scheme 2
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Scheme 3
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. V. Chaudhary, Sweta, Synthesis and catalytic activity of SBA-15 supported catalysts for styrene oxidation. Chin. J. Chem. Eng. 26(6), 1300–1306 (2018). https://doi.org/10.1016/j.cjche.2018.01.025

    Article  CAS  Google Scholar 

  2. S. Li, H. Zhou, C. Jin, N. Feng, F. Liu, F. Deng, J. Fan, Formation of subnanometer Zr-WOx clusters within mesoporous W-Zr mixed oxides as strong solid acid catalysts for friedel-crafts alkylation. J. Phys. Chem. C 118(12), 6283–6290 (2014). https://doi.org/10.1021/jp4119088

    Article  CAS  Google Scholar 

  3. F. Li, X. Xu, J. Huo, W. Wang, A simple synthesis of MnWO4 nanoparticles as a novel energy storage material. Mater. Chem. Phys. 167, 22–27 (2015). https://doi.org/10.1016/j.matchemphys.2015.06.029

    Article  CAS  Google Scholar 

  4. T. Li, C. Yang, X. Rao, F. Xiao, J. Wang, X. Su, Synthesis of magnetically recyclable Fe3O4@NiO nanostructures for styrene epoxidation and adsorption application. Ceram. Int. 41(2, Part A), 2214–2220 (2015). https://doi.org/10.1016/j.ceramint.2014.10.022

    Article  CAS  Google Scholar 

  5. S. Lwin, I.E. Wachs, Olefin metathesis by supported metal oxide catalysts. ACS Catal. 4(8), 2505–2520 (2014). https://doi.org/10.1021/cs500528h

    Article  CAS  Google Scholar 

  6. Q. Meng, H. Li, H. Li, Self-assembly of mesoporous ruthenium−boron amorphous alloy catalysts with enhanced activity in maltose hydrogenation to maltitol. J. Phys. Chem. C 112(30), 11448–11453 (2008). https://doi.org/10.1021/jp802916t

    Article  CAS  Google Scholar 

  7. N. Musselwhite, K. Na, K. Sabyrov, S. Alayoglu, G.A. Somorjai, Mesoporous aluminosilicate catalysts for the selective isomerization of n-hexane: the roles of surface acidity and platinum metal. J. Am. Chem. Soc. 137(32), 10231–10237 (2015). https://doi.org/10.1021/jacs.5b04808

    Article  CAS  PubMed  Google Scholar 

  8. A. Palani, A. Pandurangan, Esterification of acetic acid over mesoporous Al-MCM-41 molecular sieves. J. Mol. Catal. A: Chem. 226(1), 129–134 (2005). https://doi.org/10.1016/j.molcata.2004.09.017

    Article  CAS  Google Scholar 

  9. S. Pichaikaran, P. Arumugam, Vapour phase hydrodeoxygenation of anisole over ruthenium and nickel supported mesoporous aluminosilicate. Green Chem. 18(9), 2888–2899 (2016). https://doi.org/10.1039/c5gc01854d

    Article  CAS  Google Scholar 

  10. R. Savidha, A. Pandurangan, Vapour phase isopropylation of phenol over zinc- and iron-containing Al-MCM-41 molecular sieves. Appl. Catal. A 262(1), 1–11 (2004). https://doi.org/10.1016/j.apcata.2003.08.018

    Article  CAS  Google Scholar 

  11. S. Vetrivel, A. Pandurangan, Co and Mn impregnated MCM-41: their applications to vapour phase oxidation of isopropylbenzene. J. Mol. Catal. A: Chem. 227(1), 269–278 (2005). https://doi.org/10.1016/j.molcata.2004.10.036

    Article  CAS  Google Scholar 

  12. Z. Wang, Y. Jiang, Y. Zhang, J. Shi, C. Stampfl, M. Hunger, J. Huang, Identification of vicinal silanols and promotion of their Formation on MCM-41 via ultrasonic assisted one-step room-temperature synthesis for beckmann rearrangement. Ind. Eng. Chem. Res. 57(16), 5550–5557 (2018). https://doi.org/10.1021/acs.iecr.8b00274

    Article  CAS  Google Scholar 

  13. K. Patel, V. Brahmkhatri, A. Patel, Manganese (III) salen supported onto hydrous zirconia: synthesis, characterization, and solvent free aerobic oxidation of styrene. Synth. React. Inorg., Met.-Org., Nano-Met. Chem. 45(4), 539–545 (2015). https://doi.org/10.1080/15533174.2013.841220

    Article  CAS  Google Scholar 

  14. H. Cui, Y. Zhang, Z. Qiu, L. Zhao, Y. Zhu, Synthesis and characterization of cobalt-substituted SBA-15 and its high activity in epoxidation of styrene with molecular oxygen. Appl. Catal. B 101(1), 45–53 (2010). https://doi.org/10.1016/j.apcatb.2010.09.003

    Article  CAS  Google Scholar 

  15. M. Fadhli, I. Khedher, J.M. Fraile, Modified Ti/MCM-41 catalysts for enantioselective epoxidation of styrene. J. Mol. Catal. A: Chem. 420, 282–289 (2016). https://doi.org/10.1016/j.molcata.2016.05.001

    Article  CAS  Google Scholar 

  16. G. Imran, V.V. Srinivasan, R. Maheswari, A. Ramanathan, B. Subramaniam, Unique characteristics of MnOx-incorporated mesoporous silicate, Mn-FDU-5, prepared via evaporation induced self assembly. J. Porous Mater. 23(1), 57–65 (2016). https://doi.org/10.1007/s10934-015-0055-1

    Article  CAS  Google Scholar 

  17. B. Li, X. Luo, J. Huang, X. Wang, Z. Liang, One-pot synthesis of ordered mesoporous Cu-KIT-6 and its improved catalytic behavior for the epoxidation of styrene: effects of the pH value of the initial gel. Chin. J. Catal. 38(3), 518–528 (2017). https://doi.org/10.1016/S1872-2067(17)62767-0

    Article  CAS  Google Scholar 

  18. S. Mandal, A. SinhaMahapatra, B. Rakesh, R. Kumar, A. Panda, B. Chowdhury, Synthesis, characterization of Ga-TUD-1 catalyst and its activity towards styrene epoxidation reaction. Catal. Commun. 12(8), 734–738 (2011). https://doi.org/10.1016/j.catcom.2011.01.004

    Article  CAS  Google Scholar 

  19. S. Wongkasemjit, S. Tamuang, W. Tanglumlert, T. Imae, Synthesis of Mo-SBA-1 catalyst via sol–gel process and its activity. Mater. Chem. Phys. 117(1), 301–306 (2009). https://doi.org/10.1016/j.matchemphys.2009.06.004

    Article  CAS  Google Scholar 

  20. M. Selvaraj, P.K. Sinha, K. Lee, I. Ahn, A. Pandurangan, T.G. Lee, Synthesis and characterization of Mn–MCM-41and Zr–Mn-MCM-41. Microporous Mesoporous Mater. 78(2), 139–149 (2005). https://doi.org/10.1016/j.micromeso.2004.10.004

    Article  CAS  Google Scholar 

  21. A. Ramanathan, B. Subramaniam, D. Badloe, U. Hanefeld, R. Maheswari, Direct incorporation of tungsten into ultra-large-pore three-dimensional mesoporous silicate framework: W-KIT-6. J. Porous Mater. 19(6), 961–968 (2012). https://doi.org/10.1007/s10934-011-9553-y

    Article  CAS  Google Scholar 

  22. Q. Zhang, Y. Wang, S. Itsuki, T. Shishido, K. Takehira, Manganese-containing MCM-41 for epoxidation of styrene and stilbene. J. Mol. Catal. A: Chem. 188(1), 189–200 (2002). https://doi.org/10.1016/S1381-1169(02)00323-0

    Article  CAS  Google Scholar 

  23. L.H. Hoang, P.V. Hanh, N.D. Phu, X.-B. Chen, W.C. Chou, Synthesis and characterization of MnWO4 nanoparticles encapsulated in mesoporous silica SBA-15 by fast microwave-assisted method. J. Phys. Chem. Solids 77, 122–125 (2015). https://doi.org/10.1016/j.jpcs.2014.10.013

    Article  CAS  Google Scholar 

  24. X. Li, T. Lunkenbein, J. Kröhnert, V. Pfeifer, F. Girgsdies, F. Rosowski, A. Trunschke, Hydrothermal synthesis of bi-functional nanostructured manganese tungstate catalysts for selective oxidation. Faraday Discuss. 188, 99–113 (2016). https://doi.org/10.1039/c5fd00191a

    Article  CAS  PubMed  Google Scholar 

  25. D.D. Mal, S. Khilari, D. Pradhan, Efficient and selective oxidation of toluene to benzaldehyde on manganese tungstate nanobars: a noble metal-free approach. Green Chem. 20(10), 2279–2289 (2018). https://doi.org/10.1039/c8gc00123e

    Article  CAS  Google Scholar 

  26. A. Wang, X.Y. Liu, C.-Y. Mou, T. Zhang, Understanding the synergistic effects of gold bimetallic catalysts. J. Catal. 308, 258–271 (2013). https://doi.org/10.1016/j.jcat.2013.08.023

    Article  CAS  Google Scholar 

  27. S. Kavian, S.N. Azizi, S. Ghasemi, Novel bimetallic nanoporous Pd-Cu-SBA-16/CPE as a highly sensitive sensor for determination of formaldehyde. J. Electroanal. Chem. 799, 308–314 (2017). https://doi.org/10.1016/j.jelechem.2017.06.006

    Article  CAS  Google Scholar 

  28. G. Vijayakumar, A. Pandurangan, Up-gradation of α-tetralone to jet-fuel range hydrocarbons by vapour phase hydrodeoxygenation over PdNi/SBA-16 catalysts. Energy 140, 1158–1172 (2017). https://doi.org/10.1016/j.energy.2017.09.038

    Article  CAS  Google Scholar 

  29. G.F. Andrade, D.C.F. Soares, R.G. dos Santos, E.M.B. Sousa, Mesoporous silica SBA-16 nanoparticles: synthesis, physicochemical characterization, release profile, and in vitro cytocompatibility studies. Microporous Mesoporous Mater. 168, 102–110 (2013). https://doi.org/10.1016/j.micromeso.2012.09.034

    Article  CAS  Google Scholar 

  30. S. Zhang, S. Muratsugu, N. Ishiguro, M. Tada, Ceria-doped Ni/SBA-16 catalysts for dry reforming of methane. ACS Catal. 3(8), 1855–1864 (2013). https://doi.org/10.1021/cs400159w

    Article  CAS  Google Scholar 

  31. N. Anbazhagan, G. Imran, A. Qurashi, A. Pandurangan, S. Manimaran, Confinement of Mn3+ redox sites in Mn-KIT-6 and its catalytic activity for styrene epoxidation. Microporous Mesoporous Mater. 247, 190–197 (2017)

    Article  CAS  Google Scholar 

  32. J.C. Amezcua, L. Lizama, C. Salcedo, I. Puente, J.M. Domínguez, T. Klimova, NiMo catalysts supported on titania-modified SBA-16 for 4,6-dimethyldibenzothiophene hydrodesulfurization. Catal. Today 107–108, 578–588 (2005). https://doi.org/10.1016/j.cattod.2005.07.018

    Article  CAS  Google Scholar 

  33. E. Poonia, S. Duhan, K. Kumar, A. Kumar, S. Jakhar, V.K. Tomer, One pot hydrothermal synthesis of ordered mesoporous SnO2/SBA-16 nanocomposites. J. Porous Mater. 26(2), 553–560 (2019)

    Article  CAS  Google Scholar 

  34. S. Saranya, S. Senthilkumar, K.V. Sankar, R.K. Selvan, Synthesis of MnWO4 nanorods and its electrical and electrochemical properties. J. Electroceram. 28(4), 220–225 (2012)

    Article  CAS  Google Scholar 

  35. D. Carta, M.F. Casula, S. Bullita, A. Falqui, A. Corrias, Iron–cobalt nanocrystalline alloy supported on a cubic mesostructured silica matrix: FeCo/SBA-16 porous nanocomposites. J. Nanopart. Res. 13(8), 3489–3501 (2011). https://doi.org/10.1007/s11051-011-0270-x

    Article  CAS  Google Scholar 

  36. A. Feliczak-Guzik, P. Szczyglewska, I. Nowak, The effect of metal (Nb, Ru, Pd, Pt) supported on SBA-16 on the hydrodeoxygenation reaction of phenol. Catal. Today 325, 61–67 (2019)

    Article  CAS  Google Scholar 

  37. M.O. Alonso-Pérez, B. Pawelec, T.A. Zepeda, G. Alonso-Núñez, R. Nava, R.M. Navarro, R. Huirache-Acuña, Effect of the titanium incorporation method on the morphology and HDS activity of supported ternary Ni–Mo–W/SBA-16 catalysts. Microporous Mesoporous Mater. 312, 110779 (2021). https://doi.org/10.1016/j.micromeso.2020.110779

    Article  CAS  Google Scholar 

  38. A.A. Hussain, S. Nazir, R. Irshad, K. Tahir, M. Raza, Z.U.H. Khan, A.U. Khan, Synthesis of functionalized mesoporous Ni-SBA-16 decorated with MgO nanoparticles for Cr (VI) adsorption and an effective catalyst for hydrodechlorination of chlorobenzene. Mater. Res. Bull. 133, 111059 (2021)

    Article  CAS  Google Scholar 

  39. J. Liu, R. Meng, J. Li, P. Jian, L. Wang, R. Jian, Achieving high-performance for catalytic epoxidation of styrene with uniform magnetically separable CoFe2O4 nanoparticles. Appl. Catal. B 254, 214–222 (2019)

    Article  CAS  Google Scholar 

  40. J. Liu, R. Meng, H. Wang, P. Jian, Boosting styrene epoxidation via CoMn2O4 microspheres with unique porous yolk-shell architecture and synergistic intermetallic interaction. J. Colloid Interface Sci. 579, 221–232 (2020)

    Article  CAS  Google Scholar 

  41. Y. Shi, L. Chen, Q. Hu, G. Ji, Y. Lu, X. Hu, W. Huang, Co supported on interparticle porosity dominated hierarchical porous TS-1 as highly efficient heterogeneous catalyst for epoxidation of styrene. Chem. Phys. Lett. 762, 138116 (2021)

    Article  CAS  Google Scholar 

  42. N.T. Dat, T.T.N. Mai, K.-S. Lin, N.T.M. Thu, N.T. Thao, Reactivity of styrene with tert-butyl hydroperoxide over cu-based double hydroxide catalysts. Mol. Catal. 500, 111337 (2021)

    Article  CAS  Google Scholar 

  43. M. Abboud, N. Al-Zaqri, T. Sahlabji, M. Eissa, A.T. Mubarak, R. Bel-Hadj-Tahar, M.S. Hamdy, Instant and quantitative epoxidation of styrene under ambient conditions over a nickel (ii) dibenzotetramethyltetraaza [14] annulene complex immobilized on amino-functionalized SBA-15. RSC Adv. 10(58), 35407–35418 (2020)

    Article  CAS  Google Scholar 

  44. T. Sahlabji, M. Abboud, R. Bel-Hadj-Tahar, M.S. Hamdy, Spontaneous epoxidation of styrene catalyzed by flower-like NiO nanoparticles under ambient conditions. J. Nanopart. Res. 22(12), 1–10 (2020)

    Article  Google Scholar 

  45. J. Liu, F. Wang, S. Qi, Z. Gu, G. Wu, Highly selective epoxidation of styrene over gold–silica catalysts via one-pot synthesis: synthesis, characterization, and catalytic application. New J. Chem. 37(3), 769–774 (2013)

    Article  CAS  Google Scholar 

  46. J. Liu, F. Wang, T. Xu, Z. Gu, Styrene Epoxidation over Carbon Nanotube-Supported Gold Catalysts. Catal. Lett. 134(1), 51–55 (2010). https://doi.org/10.1007/s10562-009-0230-6

    Article  CAS  Google Scholar 

  47. B. Tang, W. Dai, X. Sun, N. Guan, L. Li, M. Hunger, A procedure for the preparation of Ti-Beta zeolites for catalytic epoxidation with hydrogen peroxide. Green Chem. 16(4), 2281–2291 (2014). https://doi.org/10.1039/c3gc42534g

    Article  CAS  Google Scholar 

  48. B. Li, M. Wang, L. Wu, X. Wang, Efficient epoxidation of styrene using tert-butyl hydroperoxide promoted by M0. 5Cu0. 5Co2Ox (M= Ca, Ni, and Cr) ternary catalysts. Ind. Eng. Chem. Res. 59(23), 10778–10789 (2020)

    Article  CAS  Google Scholar 

  49. W. Zheng, R. Tan, L. Zhao, Y. Chen, C. Xiong, D. Yin, Mn2+/graphene oxide nanocomposite efficiently catalyzes the epoxidation of alkenes with H2O2. RSC Adv. 4(23), 11732–11739 (2014). https://doi.org/10.1039/c3ra47183g

    Article  CAS  Google Scholar 

Download references

Acknowledgements

One of the authors, S. Manimaran acknowledges the Anna Centenary Research Fellowship (ACRF) funded by Anna University, Chennai for the financial support to carry out this work. The authors are thankful to the DST-FIST-sponsored Department of Chemistry, Anna University, for providing the laboratory and instrumentation facilities.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Arumugam Pandurangan.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Manimaran, S., Subramanian, K., Tschentscher, R. et al. Epoxidation of alkene using bi-functional metal oxide supported SBA-16 catalyst. J Porous Mater 29, 357–369 (2022). https://doi.org/10.1007/s10934-021-01170-5

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10934-021-01170-5

Keywords

Navigation