Skip to main content

Advertisement

Log in

Zn-MOF: an efficient drug delivery platform for the encapsulation and releasing of Imatinib Mesylate

  • Published:
Journal of Porous Materials Aims and scope Submit manuscript

Abstract

Mesoporous Zn2(BDC)2(DABCO)-MOF (BDC = 1,4-benzenedicarboxilic acid, and DABCO = diazabicyclooctane) was synthesized via ball-milling and employed as a good and efficient platform for targeted drug delivery. Imatinib mesylate (IM) was encapsulated in Zn-MOF and IM@Zn-MOF characterized using different technique including X-ray powder diffraction, field emission scanning electron microscopy, transmission electron microscopy, thermogravimetric analysis, inductively coupled plasma, Brunauer-Emmett-Teller surface area analysis. The result showed that small molecules of the IM successfully were encapsulated inside of the Zn-MOF. Releasing of drug-loaded Zn-MOF was studied by UV–vis spectroscopy at 240 nm at in vitro condition in HCl (0.1N) and PBS buffer. Rapid release of IM occurs upon hydrolytic decomposition of MOF in dissolution media.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. G.M. Keseru, G.M. Makara, The influence of lead discovery strategies on the properties of drug candidates. Nat. Rev. Drug Discovery 8, 203–212 (2009)

    Article  PubMed  Google Scholar 

  2. R.H. Müller, C. Jacobs, O. Kayser, Nanosuspensions as particulate drug formulations in therapy: rationale for development and what we can expect for the future. Adv. Drug Delivery Rev. 47, 3–19 (2001)

    Article  Google Scholar 

  3. C. Qi, Q. Cai, P. Zhao, X. Jia, N. Lu, L. He, X. Hou, The metal-organic framework MIL-101 (Cr) as efficient adsorbent in a vortex-assisted dispersive solid-phase extraction of imatinib mesylate in rat plasma coupled with ultra-performance liquid chromatography/mass spectrometry: application to a pharmacokinetic study. J. Chromatogr. A 1449, 30–38 (2016)

    Article  CAS  PubMed  Google Scholar 

  4. D.G. Savage, K.H. Antman, Imatinib mesylate—a new oral targeted therapy. N. Engl. J. Med. 346(9), 683–693 (2002)

    Article  CAS  PubMed  Google Scholar 

  5. M.E. Davis, Ordered porous materials for emerging applications. Nature 417, 813–821 (2002)

    Article  CAS  PubMed  Google Scholar 

  6. O.M. Yaghi, M. O’Keeffe, N.W. Ockwig, H.K. Chae, M. Eddaoudi, J. Kim, Reticular synthesis and the design of new materials. Nature 423, 705–714 (2003)

    Article  CAS  PubMed  Google Scholar 

  7. M. Kotzabasaki, G.E. Froudakis, Review of computer simulations on anti-cancer drug delivery in MOFs. Inorg. Chem. Front. 5(6), 1255–1272 (2018)

    Article  CAS  Google Scholar 

  8. F.K. Shieh, S.C. Wang, C. Yen, C. Wu, S. Dutta, L.Y. Chou, J.V. Morabito, P. Hu, M.H. Hsu, K.C.W. Wu, C.K. Tsung, J. Am. Chem. Soc. 137, 4276 (2015)

    Article  CAS  PubMed  Google Scholar 

  9. H. Alamgholiloo, S. Rostamnia, A. Hassankhani, X. Liu, A. Eftekhari, A. Hasanzadeh, K. Zhang, H. Karimi-Malehf, S. Khaksar, R.S. Varma, M.R. Shokouhimehr, Formation and stabilization of colloidal ultra-small palladium nanoparticles on diamine-modified Cr-MIL-101: synergic boost to hydrogen production from formic acid. J. Colloid Interface Sci. 567, 126–135 (2020)

    Article  CAS  PubMed  Google Scholar 

  10. H. Alamgholiloo, S. Rostamnia, K. Zhang, L.T. Hyung, Y.-S. Lee, R.S. Varma, H.W. Jang, M.R. Shokouhimehr, Boosting aerobic oxidation of alcohols via synergistic effect between TEMPO and a composite Fe3O4/Cu-BDC/GO nanocatalyst. ACS Omega 5, 5182–5191 (2020)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. S. Rostamnia, H. Alamgholiloo, M. Jafari, Ethylene diamine post-synthesis modification on open metal site Cr-MOF to access efficient bifunctional catalyst for the Hantzsch condensation reaction. Appl. Organomet. Chem. 32, e4370 (2018)

    Article  Google Scholar 

  12. H. Alamgholiloo, S. Rostamnia, A. Hassankhani, R. Banaei, Synthesis of a zeolitic imidazolate–zinc metal–organic framework and the combination of its catalytic properties with 2,2,2-trifluoro-ethanol for N-formylation. Synlett 29, 1593–1596 (2018)

    Article  CAS  Google Scholar 

  13. P. Horcajada, C. Serre, M. Vallet-Regí, M. Sebban, F. Taulelle, G. Férey, Metal–organic frameworks as efficient materials for drug delivery. Angew. Chem. 118(36), 6120–6124 (2006)

    Article  Google Scholar 

  14. K. Užarević, T.C. Wang, S.-Y. Moon, A.M. Fidelli, J.T. Hupp, O.K. Farha, T. Friščić, Mechanochemical and solvent-free assembly of zirconium-based metal–organic frameworks. Chem. Commun. 52(10), 2133–2136 (2016)

    Article  Google Scholar 

  15. L. Wang, M. Zheng, Z. Xie, Nanoscale metal–organic frameworks for drug delivery: a conventional platform with new promise. J. Mater. Chem. B 6, 707–717 (2018)

    Article  CAS  PubMed  Google Scholar 

  16. N. Motakef Kazemi, S.A. Shojaosadati, A. Morsali, In situ synthesis of a drug-loaded MOF at room temperature. Microporous Mesoporous Mater. 186, 73–79 (2014)

    Article  CAS  Google Scholar 

  17. R. Karimi Alavijeh, K. Akhbari, Biocompatible MIL-101(Fe) as a smart carrier with high loading potential and sustained release of curcumin. Inorg. Chem. 59(6), 3570–3578 (2020)

    Article  CAS  PubMed  Google Scholar 

  18. T. Gadzikwa, O.K. Farha, C.D. Malliakas, M.G. Kanatzidis, J.T. Hupp, S.T. Nguyen, Selective bifunctional modification of a non-catenated metal—organic framework material via “Click” chemistry. J. Am. Chem. Soc. 131, 13613–13615 (2009)

    Article  CAS  PubMed  Google Scholar 

  19. S. Das, H. Kim, K. Kim, Metathesis in single crystal: complete and reversible exchange of metal ions constituting the frameworks of metal—organic frameworks. J. Am. Chem. Soc. 131, 3814–3815 (2009)

    Article  CAS  PubMed  Google Scholar 

  20. C.-Y. Su, A.M. Goforth, M.D. Smith, P. Pellechia, H.-C. zur Loye, Exceptionally stable, hollow tubular metal—organic architectures: synthesis, characterization, and solid-state transformation study. J. Am. Chem. Soc. 126, 3576–3358 (2004)

    Article  CAS  PubMed  Google Scholar 

  21. M. Rosseinsky, Recent developments in metal-organic framework chemistry: design, discovery, permanent porosity and flexibility: metal-organic open frameworks. Microporous Mesoporous Mater. 73, 15–30 (2004)

    Article  CAS  Google Scholar 

  22. M.Y. Masoomi, A. Morsali, P.C. Junk, Ultrasound assisted synthesis of a Zn (II) metal–organic framework with nano-plate morphology using non-linear dicarboxylate and linear N-donor ligands. RSC Adv. 4, 47894–47898 (2014)

    Article  CAS  Google Scholar 

  23. Z. Ni, R.I. Masel, Rapid production of metal—organic frameworks via microwave-assisted solvothermal synthesis. J. Am. Chem. Soc. 128, 12394–12395 (2006)

    Article  CAS  PubMed  Google Scholar 

  24. S.H. Jhung, J.H. Lee, J.W. Yoon, C. Serre, G. Férey, J.S. Chang, Microwave synthesis of chromium terephthalate MIL-101 and its benzene sorption ability. Adv. Mater. 19, 121–124 (2007)

    Article  CAS  Google Scholar 

  25. W. Yuan, T. Friščić, D. Apperley, S.L. James, High reactivity of metal–organic frameworks under grinding conditions: parallels with organic molecular materials. Angew. Chem. Int. Ed. 49, 3916–3919 (2010)

    Article  CAS  Google Scholar 

  26. T. Friščić, L. Fábián, Mechanochemical conversion of a metal oxide into coordination polymers and porous frameworks using liquid-assisted grinding (LAG). CrystEngComm 11, 743–745 (2009)

    Article  Google Scholar 

  27. K. Fujii, A.L. Garay, J. Hill, E. Sbircea, Z. Pan, M. Xu, D.C. Apperley, S.L. James, K.D. Harris, Direct structure elucidation by powder X-ray diffraction of a metal–organic framework material prepared by solvent-free grinding. Chem. Commun. 46, 7572–7574 (2010)

    Article  CAS  Google Scholar 

  28. M.Y. Masoomi, S. Beheshti, A. Morsali, Mechanosynthesis of new azine-functionalized Zn (II) metal–organic frameworks for improved catalytic performance. J. Mater. Chem. A 2, 16863–16866 (2014)

    Article  CAS  Google Scholar 

  29. M.J. Cliffe, C. Mottillo, R.S. Stein, D.-K. Bučar, T. Friščić, Accelerated aging: a low energy, solvent-free alternative to solvothermal and mechanochemical synthesis of metal–organic materials. Chem. Sci. 3, 2495–2500 (2012)

    Article  CAS  Google Scholar 

  30. I. Stassen, N. Campagnol, J. Fransaer, P. Vereecken, D. De Vos, R. Ameloot, Solvent-free synthesis of supported ZIF-8 films and patterns through transformation of deposited zinc oxide precursors. CrystEngComm 15, 9308–9311 (2013)

    Article  CAS  Google Scholar 

  31. D. Buso, K.M. Nairn, M. Gimona, A.J. Hill, P. Falcaro, Fast synthesis of MOF-5 microcrystals using sol–gel SiO2 nanoparticles. Chem. Mater. 23, 929–934 (2011)

    Article  CAS  Google Scholar 

  32. J. Reboul, S. Furukawa, N. Horike, M. Tsotsalas, K. Hirai, H. Uehara, M. Kondo, N. Louvain, O. Sakata, S. Kitagawa, Mesoscopic architectures of porous coordination polymers fabricated by pseudomorphic replication. Nat. Mater. 11, 717–723 (2012)

    Article  CAS  PubMed  Google Scholar 

  33. S.L. James, C.J. Adams, C. Bolm, D. Braga, P. Collier, T. Friščić, F. Grepioni, K.D. Harris, G. Hyett, W. Jones, Mechanochemistry: opportunities for new and cleaner synthesis. Chem. Soc. Rev. 41, 413–447 (2012)

    Article  CAS  PubMed  Google Scholar 

  34. E. Boldyreva, Mechanochemistry of inorganic and organic systems: what is similar, what is different? Chem. Soc. Rev. 42, 7719–7738 (2013)

    Article  CAS  PubMed  Google Scholar 

  35. P.J. Beldon, L. Fábián, R.S. Stein, A. Thirumurugan, A.K. Cheetham, T. Friščić, Rapid room-temperature synthesis of zeolitic imidazolate frameworks by using mechanochemistry. Angew. Chem. 122, 9834–9837 (2010)

    Article  Google Scholar 

  36. S. Bhattacharjee, D.-A. Yang, W.-S. Ahn, A new heterogeneous catalyst for epoxidation of alkenes via one-step post-functionalization of IRMOF-3 with a manganese (II) acetylacetonate complex. Chem. Commun. 47, 3637–3639 (2011)

    Article  CAS  Google Scholar 

  37. L. Panahi, M.R. Naimi-Jamal, J. Mokhtari, A. Morsali, Mechanochemically synthesized nanoporous metal-organic framework Cu2(BDC)2(DABCO): an efficient heterogeneous catalyst for preparation of carbamates. Microporous Mesoporous Mater. 244, 208–217 (2016)

    Article  Google Scholar 

  38. S. Akbari, J. Mokhtari, Z. Mirjafary, Solvent-free and melt aerobic oxidation of benzylalcohols using Pd/Cu2(BDC)2DABCO–MOF prepared by one-step and through reduction bydimethylformamide. RSC Adv. 7, 40881–40886 (2017)

    Article  CAS  Google Scholar 

  39. A. Khosravi, J. Mokhtari, M.R. Naimi-Jamal, S. Tahmasebi, L. Panahi, Cu2(BDC)2(BPY)–MOF: an efficient and reusable heterogeneous catalyst for the aerobic Chan-Lam coupling prepared via ball-milling strategy. RSC Adv. 7, 46022–46027 (2017)

    Article  CAS  Google Scholar 

  40. S. Tahmasebi, A. Khosravi, J. Mokhtari, M.R. Naimi-Jamal, L. Panahi, One-step synthesis of Pd-NPs@ Cu2(BDC)2DABCO as efficient heterogeneous catalyst for the Suzuki-Miyaura cross-coupling reaction. J. Organomet. Chem. 853, 35–41 (2017)

    Article  CAS  Google Scholar 

  41. J. Mokhtari, B.A. Hassani, One-pot synthesis of benzoazoles via dehydrogenative coupling of aromatic 1,2-diamines/2-aminothiophenol and alcohols using Pd/Cu-MOF as a recyclable heterogeneous catalyst. Inorg. Chim. Acta 482, 726–731 (2018)

    Article  CAS  Google Scholar 

  42. Z. Ahmadzadeh, J. Mokhtari, M. Rouhani, Cu-MOF: an efficient heterogeneous catalyst for the synthesis of symmetric anhydrides via the C–H bond activation of aldehydes. RSC Adv. 8, 24203–24208 (2018)

    Article  CAS  Google Scholar 

  43. S.L. Pathi, R. Puppala, R.N. Kankan, D.R. Rao, Stable crystal form of imatinib mesylate and process for the preparation thereof, 2012, US8269003B2

  44. H. Nabipour, M. Hossaini Sadr, G. Rezanejade Bardajee, Release behavior, kinetic and antimicrobial study of nalidixic acid from [Zn2(bdc)2(dabco)] metal-organic frameworks. J. Coord. Chem. 70, 2771–2784 (2017)

    Article  CAS  Google Scholar 

  45. G. Barratt, G. Courraze, P. Couvreur, Polymeric Biomaterials (Headquarters, Marcel Dekker, Inc., New York, 2002), p. 753

    Google Scholar 

  46. C.E. Astete, C.S. Kumar, C.M. Sabliov, Size control of poly (d, l-lactide-co-glycolide) and poly (d, l-lactide-co-glycolide)-magnetite nanoparticles synthesized by emulsion evaporation technique. Colloids Surf. A 299, 209–216 (2007)

    Article  CAS  Google Scholar 

  47. A.K. Gupta, M. Gupta, Synthesis and surface engineering of iron oxide nanoparticles for biomedical applications. Biomaterials 26, 3995–4021 (2005)

    Article  CAS  PubMed  Google Scholar 

  48. S.M. Moghimi, A.C. Hunter, J.C. Murray, Long-circulating and target-specific nanoparticles: theory to practice. Pharmacol Rev 53, 283–318 (2001)

    CAS  PubMed  Google Scholar 

  49. K.A. Cychosz, A.J. Matzger, Water stability of microporous coordination polymers and the adsorption of pharmaceuticals from water. Langmuir 26, 17198 (2010)

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge from Science and Research Branch, Islamic Azad University for partial financial support of this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Javad Mokhtari.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Arabbaghi, E.K., Mokhtari, J., Naimi-Jamal, M.R. et al. Zn-MOF: an efficient drug delivery platform for the encapsulation and releasing of Imatinib Mesylate. J Porous Mater 28, 641–649 (2021). https://doi.org/10.1007/s10934-020-01027-3

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10934-020-01027-3

Keywords

Navigation