Skip to main content
Log in

New composite stationary phase for chiral high-performance liquid chromatography

  • Published:
Journal of Porous Materials Aims and scope Submit manuscript

Abstract

The new composite chiral stationary phase for high-performance liquid chromatography was prepared and characterized. Poly(styrene-divinylbenzene) microspherical particles with diameter of 3.3 micron were used as a matrix and coated with layer of 10 nm gold nanoparticles. Immobilized gold nanoparticles increased specific surface area of adsorbent and simplify covalent attachment of sulfur-containing compounds. In this work l-lysine conjugate with lipoic acid was synthesized, characterized and used for modification of gold nanoparticles. The prepared chiral selector was immobilized by the reaction of sulfur-containing groups from lipoic acid residue with gold surface of nanoparticles with formation of self-assembled monolayer. The prepared chiral stationary phase was characterized by nitrogen adsorption at low temperatures, diffuse reflection spectroscopy, scanning electron microscopy. The chromatographic retention of beta-blockers and profens was studied under conditions of reversed-phase HPLC. The possibility of enantiomers separation was demonstrated for flurbiprofen and ketoprofen racemates using 100 × 4.6 mm ID chromatographic column.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data Availability

The data that support the findings of this study are available from the corresponding author Prosuntsova D.S., upon reasonable request.

Code availability

Not applicable as all data can be requested from the corresponding author Prosuntsova D.S., upon reasonable request.

References

  1. E.P. Nesterenko, P.N. Nesterenko, D. Connolly, X. He, P. Floris, E. Duffy, B. Paull, Analyst (2013). https://doi.org/10.1039/c3an00508a

    Article  PubMed  Google Scholar 

  2. K. Saha, S.S. Agasti, C. Kim, X. Li, V.M. Rotello, Chem. Rev. (2012) https://doi.org/10.1021/cr2001178

    Article  PubMed  PubMed Central  Google Scholar 

  3. J. Turkevich, P.C. Stevenson, J. Hillier, A study of the nucleation and growth processes in the synthesis of colloidal gold. Discuss. Faraday Soc. 11, 55–75 (1951)

    Article  Google Scholar 

  4. N. Lazarus, R. Jin, G.K. Fedder, Nanosensors for Chemical and Biological Applications (Woodhead Publishing Limited, Sawston, 2014) https://doi.org/10.1533/9780857096722.2.231

    Book  Google Scholar 

  5. E. Pashai, G. Najafpour Darzi, M. Jahanshahi, F. Yazdian, M. Rahimnejad, Int. J. Biol. Macromol. (2018) https://doi.org/10.1016/j.ijbiomac.2017.11.157

    Article  PubMed  Google Scholar 

  6. S. Gong, H. Ren, C. Lin, P. Hu, R. Tian, Z. Liu, Y. Li, Y. Zhou, Y. Yang, S. Lu, Anal. Biochem. (2018) https://doi.org/10.1016/j.ab.2018.07.017

    Article  PubMed  Google Scholar 

  7. C. Park, Y. Song, K. Jang, C. Choi, S. Na, Sens. Actuators B. Chem. (2018). https://doi.org/10.1016/j.snb.2018.01.183

    Article  PubMed  PubMed Central  Google Scholar 

  8. P. Floris, B. Twamley, P.N. Nesterenko, B. Paull, D. Connolly, Microchim. Acta (2014). https://doi.org/10.1007/s00604-013-1108-2

    Article  Google Scholar 

  9. E. Tan, P. Yin, X. Lang, H. Zhang, L. Guo, Spectrochim. Acta A Mol. Biomol. Spectrosc. (2012). https://doi.org/10.1016/j.saa.2012.07.114

    Article  PubMed  Google Scholar 

  10. E.M.S. Azzam, A.F.M. El-farargy, A.A. Abd-elaal, J. Ind. Eng. Chem. (2014) https://doi.org/10.1016/j.jiec.2013.12.097

    Article  Google Scholar 

  11. S. Shankar, S.A. John, Sens. Actuators B. Chem. (2015). https://doi.org/10.1016/j.snb.2015.07.092

    Article  Google Scholar 

  12. I.A. Anan’eva, Y.A. Polyakova, E.N. Shapovalova, O.A. Shpigun, J. Anal. Chem. (2017) https://doi.org/10.1134/s1061934817080020

    Article  Google Scholar 

  13. Q. Qu, S. Peng, D. Mangelings, X. Hu, C. Yan, Electrophoresis. (2010). https://doi.org/10.1002/elps.200900375

    Article  PubMed  Google Scholar 

  14. S. Sandron, B. Paull, P.N. Nesterenko, Chromatography (2015). https://doi.org/10.2174/2213240602666150706180219

    Article  Google Scholar 

  15. K. Kobayashi, S. Kitagawa, H. Ohtani, J. Chromatogr. A (2006). https://doi.org/10.1016/j.chroma.2006.01.094

    Article  PubMed  Google Scholar 

  16. A. Tirla, M. Hansen, P. Rivera-Fuentes, Synlett (2018). https://doi.org/10.3929/ethz-b-000269441

    Article  Google Scholar 

  17. Y. Li, S. Sha, Z. Wu, C. Yang, T. Ngai, Colloids Surf. A Physicochem. Eng. Asp. (2016). https://doi.org/10.1016/j.colsurfa.2016.01.010

    Article  Google Scholar 

  18. C. Vericat, M. Vela, G. Benitez, P. Carro, R. Salvarezza, Chem. Soc. Rev. (2010) https://doi.org/10.1039/B907301A

    Article  PubMed  Google Scholar 

  19. S. Lin, Y. Tsai, C. Chen, C. Lin, C. Chen, J. Phys. Chem. B (2004) https://doi.org/10.1021/jp036310w

    Article  Google Scholar 

  20. I. Turcu, I. Zarafu, M. Popa, M.C. Chifiriuc, C. Bleotu, D. Culita, C. Ghica, P. Ionita, Nanomaterials (2017). https://doi.org/10.3390/nano7020043

    Article  PubMed  PubMed Central  Google Scholar 

  21. V. Amendola, M. Meneghetti, M. Stener, Y. Guo, S. Chen, P. Crespo, M.A. García, A. Hernando, P. Pengo, L. Pasquato, Compr. Anal. Chem., (2014) https://doi.org/10.1016/B978-0-444-63285-2.00003-1

    Article  Google Scholar 

  22. S.J. Gregg, K.S.W. Sing, Adsorption, Surface Area and Porosity (Academic Press, London, 1982)

    Google Scholar 

  23. G.V. Lisichkin, A.Yu. Fadeev, P.N. Nesterenko, A.A. Serdan, P.G. Mingalev, D.B. Furman, Khimiya privitykh poverkhnostnykh soedinenii (Chemistry of Grafted Surface Compounds) (Fizmatlit, Moscow, 2003)

    Google Scholar 

  24. A.T. Florence, D. Attwood, Physicochemical Principles of Pharmacy, 6th edn. (Pharmaceutical Press, London, 2006) https://doi.org/10.1007/978-1-349-19480-3

    Book  Google Scholar 

  25. J. Sangster, LOGKOW A Databank of Evaluated Octanol-Water Partition Coefficients (Sangster Research Laboratories, Montreal, 1994)

    Google Scholar 

Download references

Acknowledgements

This study was funded by the Russian Foundation for Fundamental Research (Grant No. 20-33-90177).

Funding

This study was funded by the Russian Foundation for Fundamental Research (Grant No. 20-33-90177).

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization: IAA, PNN; methodology: EKB, AYP, DSP; formal analysis and Investigation: DSP, AYP; writing—original draft preparation: DSP, AYP; writing—review & editing: PNN, EKB, IAA; funding acquisition: IAA; supervision: IAA. All authors read and approved the final manuscript.

Corresponding author

Correspondence to D. S. Prosuntsova.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Prosuntsova, D.S., Plodukhin, A.Y., Ananieva, I.A. et al. New composite stationary phase for chiral high-performance liquid chromatography. J Porous Mater 28, 407–414 (2021). https://doi.org/10.1007/s10934-020-00985-y

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10934-020-00985-y

Keywords

Navigation