Skip to main content
Log in

Layered double hydroxide–borate composites supported on magnetic nanoparticles: preparation, characterization and molecular dynamics simulations

  • Published:
Journal of Porous Materials Aims and scope Submit manuscript

Abstract

Magnetic nanocomposites involving tetraborate ion (TB)-intercalated Mg–Al-layered double hydroxide (LDH) shell supported on magnesium ferrite core particles are synthesized, characterized, and compared with their non-magnetic analogues. The compositions of the obtained nanocomposites were determined and structural investigations were made by powder X-ray diffraction and Fourier transform infrared spectroscopy. Particle characteristics were examined by size distribution, specific surface area measurements, scanning electron microscopy and transmission electron microscopy. Room-temperature magnetic measurements were performed with a vibrating sample magnetometer. The dynamics and structure of the interlayer water molecules and borate ions were studied by molecular dynamics simulations. Analytical and modeling studies verified that the TB ions were arranged between the LDH layers in oblique positions. The products were found to carry ca. 6% boron (1017 B atom/μg nanocomposite). The magnetic nanocomposite showed superparamagnetic properties and can potentially find applications in biomedical fields for the site-specific delivery of bio-potent boron agents.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. V. Rives (ed.), Layered Double Hydroxides: Present and Future (Nova Science Publishers, New York, 2001)

    Google Scholar 

  2. B. Zumreoglu-Karan, A.N. Ay, Chem. Papers 66, 1–10 (2012)

    Article  CAS  Google Scholar 

  3. W. Jiang, J. Wu, R. Tian, J. Porous Mater. 24, 257–265 (2017)

    Article  CAS  Google Scholar 

  4. K.H. Goh, T.T. Lim, Z. Dong, Water Res 42, 1343–1368 (2008)

    Article  CAS  PubMed  Google Scholar 

  5. T. Li, H.N. Miras, Y.F. Song, Catalysts 7, 260–277 (2017)

    Article  CAS  Google Scholar 

  6. F.L. Theiss, G.A. Ayoko, R.L. Frost, J. Colloid Interface Sci. 402, 114–121 (2013)

    Article  CAS  PubMed  Google Scholar 

  7. L. Shi, D. Li, J. Wang, S. Li, D.G. Evans, X. Duan, Clays Clay Miner. 53, 294–300 (2005)

    Article  CAS  Google Scholar 

  8. G. Elmaci, O. Icten, A.N. Ay, B. Zümreoglu-Karan, Appl. Clay Sci. 107, 117–121 (2015)

    Article  CAS  Google Scholar 

  9. G. Varga, S. Muráth, Á. Bajcsi, Á. Kukove, Z. Kónya, P. Sipos, I. Pálinkó, Reac. Kinet. Mech. Catal. 121, 241–254 (2017)

    Article  CAS  Google Scholar 

  10. L. Li, S. Ma, X. Liu, Y. Yue, J. Hui, R. Xu, Y. Bao, J. Rocha, Chem. Mater. 8, 204–208 (1996)

    Article  CAS  Google Scholar 

  11. M. Del Arco, S. Gutierrez, C. Martin, V. Rives, J. Rocha, J. Solid State Chem. 151, 272–280 (2000)

    Article  CAS  Google Scholar 

  12. A.N. Ay, B. Zümreoglu-Karan, A. Temel, L. Mafra, Appl. Clay Sci. 51, 308–316 (2011)

    Article  CAS  Google Scholar 

  13. V. Rives, M. del Arco, C. Martín, Appl. Clay Sci. 88–89, 239–269 (2014)

    Article  CAS  Google Scholar 

  14. C.D. Hunt, J. Trace Elem. Med. Biol. 26, 157–160 (2012)

    Article  CAS  PubMed  Google Scholar 

  15. B.C. Das, P. Thapa, R. Karki, C. Schinke, S. Das, S. Kambhampati, S.K. Banerjee, P.V. Veldhuizen, A. Verma, L.M. Weiss, T. Evans, Future Med. Chem. 5, 653–676 (2013)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. B. Zumreoglu-Karan, D.A. Kose, Pure Appl. Chem. 87, 155–162 (2015)

    Article  CAS  Google Scholar 

  17. L. Pizzorno, Integr. Med. 14, 35–48 (2015)

    Google Scholar 

  18. A.K. García-Ávila, E.D. Farfán-García, J.A. Guevara-Salazar, J.G. Trujillo-Ferrara, M.A. Soriano-Ursúa, World J. Transl. Med. 12, 1–9 (2017)

    Article  Google Scholar 

  19. E. Hey-Hawkins, C. VinasTeixidor (eds.), Boron Based Compounds: Potential and Emerging Applications in Medicine (Wiley, Hoboken, 2018)

    Google Scholar 

  20. N.S. Hosmane, Boron Science: New Technologies and Applications (CRC Press, Boca Raton, 2011), p. 147

    Google Scholar 

  21. A.N. Ay, H. Akar, A. Zaulet, C. Viňas, F. Teixidor, B. Zumreoglu-Karan, Dalton Trans. 46, 3303–3310 (2017)

    Article  CAS  PubMed  Google Scholar 

  22. G. Choi, I.-R. Jeon, H. Piao, J.-H. Choy, Adv. Funct. Mater. 28, 1704470 (2017)

    Article  CAS  Google Scholar 

  23. W.W. Ku, R.E. Chapin, R.F. Moseman, R.E. Brink, K.D. Pierce, K.Y. Adams, Toxicol. Appl. Pharmacol. 111, 145–151 (1991)

    Article  CAS  PubMed  Google Scholar 

  24. C.D. Hunt, in Encyclopedia of Dietary Supplements, ed. by P.M. Coates, M.R. Blackman, G.M. Cragg, M. Levine, J. Moss, J.D. White, 2nd ed. (CRC Press, New York, 2004) p. 55.

    Chapter  Google Scholar 

  25. H. Kempe, S.A. Kates, M. Kempe, Expert Rev. Med. Devices 8, 291–294 (2011)

    Article  PubMed  Google Scholar 

  26. J. Cabrera-González, L. Cabana, B. Ballesteros, G. Tobias, R. Núñez, Chem. Eur. J. 22, 5096–5101 (2016)

    Article  PubMed  CAS  Google Scholar 

  27. O. Icten, N. Hosmane, D.A. Kose, B. Zumreoglu-Karan, New J. Chem. 41, 3646–3652 (2017)

    Article  CAS  Google Scholar 

  28. E. Oleshkevich, F. Teixidor, A. Rosell, C. Vinas, Inorg. Chem. 57, 462–470 (2018)

    Article  CAS  PubMed  Google Scholar 

  29. O. Icten, D.A. Kose, S.J. Matissek, J.A. Misurelli, S.F. Elsawa, N.S. Hosmane, B. Zumreoglu-Karan, Mater. Sci. Eng. C 92, 317–328 (2018)

    Article  CAS  Google Scholar 

  30. A.N. Ay, D. Konuk, B. Zumreoglu-Karan, Mater. Sci. Eng. C 31, 851–857 (2011)

    Article  CAS  Google Scholar 

  31. M.P. Allen, D.J. Tildesley, Computer Simulation of Liquids, 2nd edn. (Oxford University Press, New York, 2017)

    Book  Google Scholar 

  32. P.P. Kumar, A.G. Kalinichev, R.J. Kirkpatrick, J. Phys. Chem. C. 111, 13517–13523 (2007)

    Article  CAS  Google Scholar 

  33. A.G. Kalinichev, P.P. Kumar, R.J. Kirkpatrick, Phil. Mag. 90, 2475–2488 (2010)

    Article  CAS  Google Scholar 

  34. M. Bellotto, B. Rebours, O. Clause, J. Lynch, D. Bazin, E. Elkaim, J. Phys. Chem. 100, 8527–8534 (1996)

    Article  CAS  Google Scholar 

  35. M. Vucelic, W. Jones, G.D. Moggridge, Clays Clay Miner. 45, 803–813 (1997)

    Article  CAS  Google Scholar 

  36. K. Yao, M. Taniguchi, M. Nakata, M. Takahashi, A. Yamagishi, Langmuir 14, 2410–2414 (1998)

    Article  CAS  Google Scholar 

  37. R.T. Cygan, J.J. Liang, A.G. Kalinichev, J. Phys. Chem. B 108, 1255–1266 (2004)

    Article  CAS  Google Scholar 

  38. S.L. Mayo, B.D. Olafson, W.A. Goddard, J. Phys. Chem. 94, 8897–8909 (1990)

    Article  CAS  Google Scholar 

  39. A.K. Rappe, W.A. Goddard, J. Phys. Chem. 95, 3358–3363 (1991)

    Article  CAS  Google Scholar 

  40. S.P. Newman, T. Di Cristina, P.V. Coveney, W. Jones, Langmuir 18, 2933–2939 (2002)

    Article  CAS  Google Scholar 

  41. R.J. Kirkpatrick, A.G. Kalinichev, J. Wang, X. Hou, J.E. Amonette, Molecular modeling of the vibrational spectra of interlayer and surface species of layered double hydroxides, in The Application of Vibrational Spectroscopy to Clay Minerals and Layered Double Hydroxides, ed. by J.T. Kloprogge (The Clay Mineral Society, Aurora, 2005), pp. 239–285

    Google Scholar 

  42. BIOVIA, Inc. (2017), https://accelrys.com/products/datasheets/materials-studio-overview.pdf

  43. F. Cavani, F. Trifiro, A. Vaccari, Catal. Today 11, 173–301 (1991)

    Article  CAS  Google Scholar 

  44. A.N. Ay, B. Zumreoglu-Karan, A. Temel, Microporous Mesoporous Mater. 98, 1–5 (2007)

    Article  CAS  Google Scholar 

  45. N.T. Whilton, P.J. Vickers, S. Mann, J. Mater. Chem. 7, 1623–1629 (1997)

    Article  CAS  Google Scholar 

  46. N. Morimoto, Mineral. J. 2, 1–18 (1956)

    Article  CAS  Google Scholar 

  47. C. Weir, J. Res. NBS-A 70, 153–164 (1966)

    Article  CAS  Google Scholar 

  48. C.G. Salentine, Inorg. Chem. 22, 3920–3924 (1983)

    Article  CAS  Google Scholar 

  49. J.M. Simon, R.A. Smith, Glass Technol. 41, 169–173 (2000)

    CAS  Google Scholar 

  50. M.A. Beckett, A. Davies, C.D. Thomas, Comput. Theor. Chem. 1044, 74–79 (2014)

    Article  CAS  Google Scholar 

  51. F.M. Labajos, V. Rives, M.A. Ulibarri, J. Mater. Sci. 27, 1546–1552 (1992)

    Article  CAS  Google Scholar 

  52. R.J. Kirkpatrick, A.G. Kalinichev, X. Hou, L. Struble, Mater. Struct. 38, 449–458 (2005)

    Article  CAS  Google Scholar 

  53. B.F. Ngouana-Wakou, A.G. Kalinichev, J. Phys. Chem. C 118, 12758–12773 (2014)

    Article  CAS  Google Scholar 

  54. M. del Arco, V. Rives, R. Trujillano, Stud. Surf. Sci. Catal. 87, 507–515 (1994)

    Article  CAS  Google Scholar 

  55. M. Thommes, K. Kaneko, A.V. Neimark, J.P. Olivier, F. Rodriguez-Reinoso, J. Rouquerol, K.S.W. Sing, Pure Appl. Chem. 87, 1051–1069 (2015)

    Article  CAS  Google Scholar 

  56. A. Weibel, R. Bouchet, F. Boulch, P. Knauth, Chem. Mater. 17, 2378–2385 (2005)

    Article  CAS  Google Scholar 

  57. H. Zhang, K. Zou, H. Sun, X. Duan, J. Solid. State. Chem. 178, 3485–3493 (2005)

    Article  CAS  Google Scholar 

  58. J. Liu, F. Li, D. G. Evans, X. Duan, Chem. Commun. 542–543 (2003)

  59. S. Zanganeh, J.Q. Ho, M. Aieneravaie, M. Erfanzadeh, M. Pauliah, R. Spitler, in Iron Oxide Nanoparticles for Biomedical Applications, ed. by M. Mahmoudi, S. Laurent (Elsevier, Oxford, 2018), pp. 247–271

  60. A. Datt, N. Ndiege, S.C. Larsen, in Nanomaterials for Biomedicine, ed. by R. Nagarajan, ACS Symposium Series 1119, pp. 239–258 (2012)

  61. A.H. Faraji, P. Wipf, Bioorg. Med. Chem. 17, 2950–2962 (2009)

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work has been supported by Hacettepe University through project: 012 01 601 002. A.G.K. also acknowledges support of the Basic Research Program at the National Research University Higher School of Economics within the framework of a subsidy by the Russian Academic Excellence Project “5-100”.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ahmet Nedim Ay.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Powder XRD patterns, FT-IR spectra and TGA/D-TGA curves of NO3–LDH, TB–LDH, NO3–LDH /MF and TB–LDH/MF, Particle size distribution curves of TB–LDH and TB–LDH/MF. A complete list of the force field parameters describing the energy of interatomic interactions in the simulated systems is also provided in Supplementary Information together with the description of how these parameters were used in the present calculations. Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 912 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ay, A.N., Zumreoglu-Karan, B., Kalinichev, A.G. et al. Layered double hydroxide–borate composites supported on magnetic nanoparticles: preparation, characterization and molecular dynamics simulations. J Porous Mater 27, 735–743 (2020). https://doi.org/10.1007/s10934-019-00853-4

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10934-019-00853-4

Keywords

Navigation