Skip to main content

Advertisement

Log in

Synthesis of composite insulation materials—expanded perlite filled with silica aerogel

  • Published:
Journal of Porous Materials Aims and scope Submit manuscript

Abstract

The aim of this paper is to synthesis a new type of insulation material (EPA), which fill the aerogels into the expanded perlite (EP). EP is a kind of lightweight filler, its application is constrained by the character of absorbing water easily. The silicic acid is inhaled into the expanded perlite at −0.1 MPa, aging 24 h, it becomes aerogel after solvent exchanging/surface modifying and drying. The pores of EP are filled with aerogel which affects thermal conductivity of expanded perlite little and makes it hydrophobic. EPA has a wider use than EP for its hydrophobic character. A new recipe to synthesize aerogel, filled into EP, with the thermal conductivity of 0.034 W/m K in ambient pressure drying is found in this experiment. The time and reagents dosage for synthesizing EPA are less than large block of aerogel, while the thermal conductivity is close to it. The scanning electron microscopy is used to analyze EPA’s micro structure. The thermal conductivity tester is used for testing the thermal conductivity of silica aerogel, expanded perlite and EPA.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. C.J. Lee, G.S. Kim, S.H. Hyun, Synthesis of silica aerogels from waterglass via new modified ambient drying. J. Mater. Sci. 37, 2237–2241 (2002)

    Article  CAS  Google Scholar 

  2. G. Carlson, D.L.K. McKinley, J. Richardson, T. Tillotson, Aerogel commercialization technology, markets and costs. J. Non-Cryst. Solids 186, 372–379 (1995)

    Article  CAS  Google Scholar 

  3. E.N. Mari-Ann Einarsrud, Strengthening of water glass and colloidal sol based silica gels by aging in TEOS. J. Non-Cryst. Solids 226, 7 (1998)

    Google Scholar 

  4. P.B. Sarawade et al., Influence of aging conditions on textural properties of water-glass-based silica aerogels prepared at ambient pressure. Korean J. Chem. Eng. 27(4), 1301–1309 (2010)

    Article  CAS  Google Scholar 

  5. M.D.F. Júlio, L.M. Ilharco, Superhydrophobic hybrid aerogel powders from waterglass with distinctive applications. Microporous Mesoporous Mater. 199, 29–39 (2014)

    Article  Google Scholar 

  6. F. Shi, L. Wang, J. Liu, Synthesis and characterization of silica aerogels by a novel fast ambient pressure drying process. Mater. Lett. 60, 3718–3722 (2006)

    Article  CAS  Google Scholar 

  7. G. Wu et al., Preparation and surface modification mechanism of silica aerogels via ambient pressure drying. Mater. Chem. Phys. 129(1–2), 308–314 (2011)

    Article  CAS  Google Scholar 

  8. A.P. Rao, A.V. Rao, U.K.H. Bangi, Low thermalconductive, transparent and hydrophobic ambient pressure dried silica aerogels with various preparation conditions using sodium silicate solutions. J. Sol-Gel Sci. Technol. 47(1), 85–94 (2008)

    Article  CAS  Google Scholar 

  9. P.M. Shewale et al., Synthesis and characterization of low density and hydrophobic silica aerogels dried at ambient pressure using sodium silicate precursor. J. Porous Mater. 16(1), 101–108 (2007)

    Article  Google Scholar 

  10. I.B. Topçu, B. Işıkdağ, Manufacture of high heat conductivity resistant clay bricks containing perlite. Build. Sci. 42(10), 3540–3546 (2007)

    Google Scholar 

  11. A.G. Celik, A.M. Kilic, G.O. Cakal, Expanded perlite aggregate characterization for use as a lightweight construction raw material. Physicochem. Probl. Miner. Process. 49(2), 689–700 (2013)

    CAS  Google Scholar 

  12. A. Sarı, A. Karaipekli, C. Alkan, Preparation, characterization and thermal properties of lauric acid/expanded perlite as novel form-stable composite phase change material. Chem. Eng. J. 155(3), 899–904 (2009)

    Article  Google Scholar 

  13. R. Demirboǧa, R. Gül, Thermal conductivity and compressive strength of expanded perlite aggregate concrete with mineral admixtures. Energ. Buildings 35(11), 1155–1159 (2003)

    Article  Google Scholar 

  14. O. Sengul et al., Effect of expanded perlite on the mechanical properties and thermal conductivity of lightweight concrete. Energ Build. 43(2–3), 671–676 (2011)

    Article  Google Scholar 

  15. M. Alam et al., Experimental characterisation and evaluation of the thermo-physical properties of expanded perlite—fumed silica composite for effective vacuum insulation panel (VIP) core. Energ Build. 69, 442–450 (2014)

    Article  Google Scholar 

  16. S. Ramakrishnan et al., A novel paraffin/expanded perlite composite phase change material for prevention of PCM leakage in cementitious composites. Appl. Energy 157, 85–94 (2015)

    Article  CAS  Google Scholar 

  17. N. Zhang et al., Lauric–palmitic–stearic acid/expanded perlite composite as form-stable phase change material: Preparation and thermal properties. Energ Build. 82, 505–511 (2014)

    Article  Google Scholar 

  18. J. Zhang et al., Preparation and properties of gypsum based energy storage materials with capric acid–palmitic acid/expanded perlite composite PCM. Energ Build. 92, 155–160 (2015)

    Article  Google Scholar 

  19. A. Karaipekli et al., Thermal characteristics of expanded perlite/paraffin composite phase change material with enhanced thermal conductivity using carbon nanotubes. Energy Convers. Manag. 134, 373–381 (2017)

    Article  CAS  Google Scholar 

  20. R. Li et al., Thermal compatibility of Sodium Nitrate/Expanded Perlite composite phase change materials. Appl. Therm. Eng. 103, 452–458 (2016)

    Article  CAS  Google Scholar 

  21. A.P. Rao, A.V. Rao, G.M. Pajonk, P.M. Shewale, Effect of solvent exchanging process on the preparation of the hydrophobic silica aerogels by ambient pressure drying method using sodium silicate precursor. J. Mater. Sci. 42, 8418–8425 (2007)

    Article  CAS  Google Scholar 

  22. Rao, A.P., A.V. Rao, G.M. Pajonk, Hydrophobic and physical properties of the two step processed ambient pressure dried silica aerogels with various exchanging solvents. J. Sol-gel Sci. Technol. 36(3), 285–292 (2005)

    Article  CAS  Google Scholar 

  23. M-Y. Xie, K-T. Fang, Admissibility and minimaxity of the uniform design measure in nonparametric regression model. J. Stat. Plan. Inference, 83(1), 101–111 (2000). doi:10.1016/S0378-3758(99)00089-0

    Article  Google Scholar 

  24. K.T. Fang, D.K. Lin, P. Winker, Y. Zhang, Uniform design: theory and application. Technometrics, 42, 237–248 (2000)

    Article  CAS  Google Scholar 

  25. Wang, B. et al., Progress in drying technology for nanomaterials. Dry. Technol. 23(1–2), 7–32 (2005)

    Article  Google Scholar 

  26. S. Rajeshkumar, G.M. Anilkumar, S. Ananthakumar, K.G.K. Warrier, Role of drying techniques on the development of porosity in silica gels. Dry. Technol. 5 59–63 (1998)

    CAS  Google Scholar 

  27. A.V. Rao, E. Nilsen, M.A. Einarsrud, Effect of precursors, methylation agents and solvents on the physicochemical properties of silica aerogels prepared by atmospheric pressure druing method. J. Non-cryst Solids 296, 165–171 (2001)

    Article  Google Scholar 

  28. A.P. Rao, A.V. Rao, J.L. Gurav, Effect of protic solvents on the physical properties of the ambient pressure dried hydrophobic silica aerogels using sodium silicate precursor. J. Porous Mater. 15, 507–512 (2007)

    Article  Google Scholar 

  29. U.K.H. Bangi, A. Venkateswara Rao, A. Parvathy Rao, A new route for preparation of sodium-silicate-based hydrophobic silica aerogels via ambient-pressure drying. Sci. Technol. Adv. Mater. 9(3), 035006 (2016)

    Article  Google Scholar 

  30. L.W. Hrubesh, R.W. Pekala, Thermal properties of organic and inorganic aerogels. J. Mater. Res. 9, 731–738 (1994)

    Article  CAS  Google Scholar 

  31. J. Fricke, T. Tillotson, Aerogels production, characterization, and applications. Thin Solid Films 297, 212–223 (1997)

    Article  CAS  Google Scholar 

  32. M.A. Aegerter, N. Leventis, M.M. Koebel, Aerogels Handbook, ed. by M.A. Aegerter. Advances in Sol-Gel Derived Materials and Technologiesed (Springer, New York, 2011)

    Chapter  Google Scholar 

  33. G. Wei, Y. Liu, X. Zhang, F. Yu, X. Du, Thermal conductivities study on silica aerogel and its composite insulation materials. Int. J. Heat Mass Transf. 54, 2355–2366 (2011)

    Article  CAS  Google Scholar 

  34. X. Lu, R. Caps, J. Fricke, C.T. Alviso, R.W. Pekala, Correlation between structure and thermal conductivity of organic aerogels. J. Non-Cryst. Solids. 188, 226–234 (1995)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This research was financially supported by Shanxi Province Science and Technology Project in Taiyuan University of Technology (No. 20150313014-1) and Henan Province Science and Technology Project in Xinyang Normal University (No. 152102310361). We thank Shangtianti Yihe Resources Development Co., Ltd, Xinyang, China, for providing the expanded perlite materials.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhu Li.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, L., Li, Z., Jing, Q. et al. Synthesis of composite insulation materials—expanded perlite filled with silica aerogel. J Porous Mater 25, 373–382 (2018). https://doi.org/10.1007/s10934-017-0448-4

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10934-017-0448-4

Keywords

Navigation