Skip to main content
Log in

A silica/polyvinyl alcohol membrane suitable for separating proteins

  • Published:
Journal of Porous Materials Aims and scope Submit manuscript

Abstract

Membrane separation at low temperatures is a favorable method for concentrating and purifying heat-sensitive biological molecules, for example, proteins. This results in that the production of an ultrafiltration membrane with long-term durability and low cost is receiving extensive attention. A new type of ultrafiltration membrane suitable for concentrating or separating proteins or macromolecules from small molecules such as salts or organic compounds is obtainable by directly mixing water glass solution with polyvinyl alcohol solution followed by soaking in aqueous H2SO4 solution. The molecular weight cut off of the ultrafiltration membrane was estimated to be >36,000 and <45,000 Da while its water permeability is reasonably high. The measured results of the critical mechanical properties, including tensile force, strength, length and elongation of the membrane indicated that its long-term durability should be good. Soaking the silica/polyvinyl alcohol membranes in 2 mol/L aqueous H2SO4 solution is very vital to improve the rejection rate of proteins investigated. The new and advanced preparation method of the membrane has a short, efficient and low cost operating process. The silica/polyvinyl alcohol membrane may also be applicable to the removal of microorganisms in water.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. J.I. Boye, S. Aksay, S. Roufik, S. Ribéreau, M. Mondor, E. Farnworth, S.H. Rajamohamed, Food Res. Int. 43, 537–546 (2010)

    Article  CAS  Google Scholar 

  2. S.S. Fernández, C. Menéndez, S. Mucciarelli, A. Pérez Padilla, J. Sci. Food Agric. 87(10), 1850–1857 (2007)

    Article  Google Scholar 

  3. A.N. Rinaldoni, C.C. Tarazaga, M.E. Campderrós, A. Pérez Padilla, J. Food Eng. 92, 226–232 (2009)

    Article  Google Scholar 

  4. T.R. Noordman, T.H. Ketelaar, F. Donkers, J.A. Wesselingh, Chem. Eng. Sci. 57, 693–703 (2002)

    Article  CAS  Google Scholar 

  5. A. Saxena, V.K. Shahi, Ind. Eng. Chem. Res. 49(2), 780–789 (2010)

    Article  CAS  Google Scholar 

  6. H. Susantoa, H. Arafat, E.M.L. Janssena, M. Ulbrichta, Sep. Purif. Technol. 63, 558–565 (2008)

    Article  Google Scholar 

  7. P. Del Hoyo, M. Rendueles, M. Díaz, Meat Sci. 78, 522–528 (2008)

    Article  Google Scholar 

  8. P. Del Hoyo, F. Moure, M. Rendueles, M. Díaz, Meat Sci. 76, 402–410 (2007)

    Article  Google Scholar 

  9. T. Laura, R. Furlán, A. Pérez Padilla, M.E. Campderrós, Food Res. Int. 43(3), 788–796 (2010)

    Article  Google Scholar 

  10. L. Vandanjon, R. Johannsson, M. Derouiniot, P. Jaouen, P. Bourseau, J. Food Eng. 83, 581–589 (2007)

    Article  CAS  Google Scholar 

  11. Y. Li, A. Shahbazi, C.T. Kadzere, J. Food Eng. 75(4), 574–580 (2006)

    Article  CAS  Google Scholar 

  12. A. Muller, B. Chaufer, U. Merin, G. Daufin, Le Lait 83, 439–451 (2003)

    Article  CAS  Google Scholar 

  13. H. Roodink, T. Niewold, inventors, Method for preparing a blood plasma powder and animal feed thus obtained. WO Patent 030654. 2003 April 17

  14. C.H. Muller, G.P. Agarwal, T. Melin, T. Wintgens, J. Membr. Sci. 227, 51–69 (2003)

    Article  CAS  Google Scholar 

  15. S. Dailloux, G. Djelveh, A. Peyron, C. Oulion, J. Food Eng. 55, 35–39 (2002)

    Article  Google Scholar 

  16. S.O. Fernández, J.A. Rodríguez, A. Pérez Padilla, Desalination 126, 95–100 (1999)

    Article  Google Scholar 

  17. R. Ghosh, Z.F. Cui, J. Membr. Sci. 139(1), 17–28 (1998)

    Article  CAS  Google Scholar 

  18. S. Najarian, B.J. Bellhouse, J. Membr. Sci. 114(2), 245–253 (1996)

    Article  CAS  Google Scholar 

  19. D. Belhocine, H. Grib, D. Abdessmed, Y. Comeau, N. Mameri, J. Membr. Sci. 142, 159–171 (1998)

    Article  CAS  Google Scholar 

  20. L. Millesime, C. Amiel, B. Chaufer, J. Membr. Sci. 89(3), 223–234 (1994)

    Article  CAS  Google Scholar 

  21. C. Yacou, S. Smart, J.C. Diniz da Costa, Energy Environ. Sci. 5, 5820–5832 (2012)

    Article  CAS  Google Scholar 

  22. D. Uhlmann, S. Smart, J.C. Diniz da Costa, J. Membr. Sci. 380, 48–54 (2011)

    Article  CAS  Google Scholar 

  23. T. Tsuru, R. Igi, M. Kanezashi, T. Yosioka, S. Fujisaki, Y. Iwamoto, AIChE J. 57, 618–629 (2011)

    Article  CAS  Google Scholar 

  24. R. Igi, T. Yoshioka, Y.H. Ikuhara, Y. Iwamoto, T. Tsuru, J. Am. Ceram. Soc. 91, 2975–2981 (2008)

    Article  CAS  Google Scholar 

  25. V. Boffa, J.E. ten Elshof, D.H.A. Blank, Microporous Mesoporous Mater. 100, 173–182 (2007)

    Article  CAS  Google Scholar 

  26. C. Liu, J. Wang, Z. Rong, J. Membr. Sci. 287, 6–8 (2007)

    Article  CAS  Google Scholar 

  27. L. Huang, S. Kawi, K. Hidajat, S.C. Ng, Microporous Mesoporous Mater. 88, 254–265 (2006)

    Article  CAS  Google Scholar 

  28. S. Higgins, R. Kennard, N. Hill, J. Dicarlo, W.J. DeSisto, J. Membr. Sci. 279, 669–674 (2006)

    Article  CAS  Google Scholar 

  29. H.M. Alsyouri, D. Li, Y.S. Lin, Z. Ye, S.P. Zhu, J. Membr. Sci. 282, 266–275 (2006)

    Article  CAS  Google Scholar 

  30. C. Boissiere, M.A.U. Martines, P.J. Kooyman, T.R. de Kruijff, A. Larbot, E. Prouzet, Chem. Mater. 15, 460–463 (2003)

    Article  CAS  Google Scholar 

  31. G. Xomeritakis, C.M. Braunbarth, B. Smarsly, N. Liu, R. Köhn, Z. Klipowicz, C.J. Brinker, Microporous Mesoporous Mater. 66, 91–101 (2003)

    Article  CAS  Google Scholar 

  32. Y.S. Kim, S.M. Yang, Adv. Mater. 14, 1078–1081 (2002)

    Article  CAS  Google Scholar 

  33. K. Nakagawa, H. Matsuyamaa, T. Makib, M. Teramoto, N. Kubota, Sep. Purif. Technol. 44, 145–151 (2005)

    Article  CAS  Google Scholar 

  34. L.C. Viannade Aguiar, A. de Souza Gomes, G.M. de Ramos Filho, Polímeros 24(6), 689–693 (2014)

    Article  Google Scholar 

  35. J.M. Dodda, J.M.P. Bělský, J. Chmelař, T. Remiš, K. Smolná, M. Tomáš, L. Kullová, J. Kadlec, J. Mater. Sci. 50(19), 6477–6490 (2015)

    Article  CAS  Google Scholar 

  36. C.J. Fenk, N. Kaufman, D.G. Gerbig, J. Chem. Educ. 84(10), 1676–1678 (2007)

    Article  CAS  Google Scholar 

  37. G. Silkstone, M.T. Wilson, PLoS One 11(3), e0148369 (2016). doi:10.1371/journal.pone.0148369

    Article  Google Scholar 

  38. National Standard of the People’s Republic of China. Technical terms of membrane separation. GB/T 20103-2006, jointly published by General Administration of Quality Supervision, Inspection and Quarantine of the People’s Republic of China and Standardization Administration of the People’s Republic of China

  39. F.I. Hai, T. Riley, S. Shawkat, S.F. Magram, K. Yamamoto, Water 6, 3603–3630 (2014)

    Article  Google Scholar 

  40. H.P. Erickson, Biol. Proc. Online 11(1), 32–51 (2009)

    Article  CAS  Google Scholar 

  41. R.M. Boom, I.M. Wienk, T. Van den Boomgarrd, C.A. Smolders, J. Membr. Sci. 73, 277–292 (1992)

    Article  CAS  Google Scholar 

  42. H. Yuan, J. Ren, L. Cheng, L. Shen, J. Appl. Polym. Sci. 130(6), 4066–4074 (2013)

    CAS  Google Scholar 

  43. E. Eren, A. Sarihan, B. Eren, H. Gumus, F.O. Kocak, J. Membr. Sci. 475, 1–8 (2015)

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wenbiao Wu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ran, S., Wu, W. A silica/polyvinyl alcohol membrane suitable for separating proteins. J Porous Mater 24, 469–476 (2017). https://doi.org/10.1007/s10934-016-0282-0

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10934-016-0282-0

Keywords

Navigation