Skip to main content
Log in

Zeolite-Y encapsulated VO[2-(2′-hydroxyphenyl)benzimidazole] complex: investigation of its catalytic activity towards oxidation of organic substrates

  • Published:
Journal of Porous Materials Aims and scope Submit manuscript

Abstract

Zeolite-Y encapsulated VO(IV)2-(2′-hydroxyphenyl)benzimidazole (ohpbmzl) was synthesized by flexible ligand approach and characterized using various physico-chemical techniques such as elemental analysis, XRD, inductively coupled plasma-atomic emission, fourier transform infrared spectroscopy, UV–vis-diffuse reflectance and electron paramagnetic resonance spectroscopy, thermogravimetric analysis, BET surface area and cyclic voltammetry (CV). Based on the results a square pyramidal structure was suggested for the encapsulated complex. Shift in UV absorbance to higher wavelength and variations in the redox potential values compared to the non-encapsulated complex in CV confirmed the successful encapsulation of the complex in the zeolite matrix. The catalytic efficacy was investigated towards oxidation of phenol, styrene, cyclohexane and ethyl benzene in acetonitrile using H2O2 as oxidant. Influence of reaction parameters like catalyst and substrate concentration, substrate/H2O2 molar ratio, and temperature were investigated to optimize the reaction conditions for maximum substrate conversion and selectivity towards desired products using the encapsulated complex. The catalytic activity was compared with vanadyl exchanged zeolite-Y (VO-Y) and non-encapsulated complex. The encapsulated complex retained its stability up to 3 runs as confirmed by recycling studies. Mechanistic pathways were proposed for all the probe reactions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Scheme 2

Similar content being viewed by others

References

  1. S.J.J. Titinchi, G.V. Willingh, H.S. Abbo, R. Prasad, Catal. Sci. Technol. 5, 325–338 (2015)

    Article  CAS  Google Scholar 

  2. K.K. Bania, R.C. Deka, J. Phys. Chem. C 117(22), 11663–11678 (2013)

    Article  CAS  Google Scholar 

  3. C.K. Modi, B.G. Gade, J.A. Chudasama, D.K. Parmar, H.D. Nakum, A.L. Patel, Spectrochem. Acta Mol. Biomol. Spectrosc. 140, 174–184 (2015)

    Article  CAS  Google Scholar 

  4. D.C. Crans, J.J. Smee, E. Gaidamauskas, L. Yang, Chem. Rev. 104, 849–902 (2004)

    Article  CAS  Google Scholar 

  5. V. Conte, B. Floris, Inorg. Chim. Acta 363, 1935–1946 (2010)

    Article  CAS  Google Scholar 

  6. G. Licini, V. Conte, A. Coletti, M. Mba, C. Zonta, Coord. Chem. Rev. 255(19–20), 2345–2357 (2011)

    Article  CAS  Google Scholar 

  7. T. Joseph, D. Srinivas, C.S. Gopinath, S.B. Halligudi, Catal. Lett. 83(3–4), 209–214 (2002)

    Article  CAS  Google Scholar 

  8. G. Barak, Y. Sasson, J. Chem. Soc. Chem. Commun. (16), 1266–1267 (1987)

  9. N.S. Patil, B.S. Uphade, P. Jana, S.K. Bharagava, V.R. Choudhary, J. Catal. 223(1), 236–239 (2004)

    Article  CAS  Google Scholar 

  10. L. Nie, K.K. Xin, W.S. Li, X.P. Zhou, Catal. Commun. 8(3), 488–492 (2007)

    Article  CAS  Google Scholar 

  11. D.M. Gao, Q.M. Gao, Catal. Commun. 8(4), 681–685 (2007)

    Article  CAS  Google Scholar 

  12. M. Hüdlicky, Oxidations in Organic Chemistry (American Chemical Society, Washington, 1990)

    Google Scholar 

  13. J.E. Bäckvall (ed.), Modern Oxidation Methods (Wiley-VCH, Weinheim, 2004)

    Google Scholar 

  14. R.A. Sheldon, R.A. Van Santen, Catalytic Axidation Applications (World Scientific Publishing, Singapore, 1995)

    Book  Google Scholar 

  15. A.K. Suresh, M.M. Sharma, T. Sridhar, Ind. Eng. Chem. Res. 39(11), 3958–3997 (2000)

    Article  CAS  Google Scholar 

  16. R. Alcántara, L. Canoira, P.G. Joao, J.M. Santos, I. Vázquez, Appl. Catal. A: Gen. 203(2), 259–268 (2000)

    Article  Google Scholar 

  17. K. Warangkana, T. Wimonrat, J. Met. Mater. Miner. 20(2), 29–34 (2010)

    Google Scholar 

  18. M.R. Maurya, M. Kumar, U. Kumar, J. Mol. Catal. A: Chem. 273(1–2), 133–143 (2007)

    Article  CAS  Google Scholar 

  19. H. Klein, C. Kirschhock, H. Fuess, J. Phys. Chem. 98(47), 12345–12360 (1994)

    Article  CAS  Google Scholar 

  20. K.K. Bania, R.C. Deka, J. Phys. Chem. C 116(27), 14295–14310 (2012)

    Article  CAS  Google Scholar 

  21. W.H. Quayle, J.H. Lunsford, Inorg. Chem. 21(1), 97–103 (1982)

    Article  CAS  Google Scholar 

  22. W.H. Quayle, G. Peeters, G.L.D. Roy, E.F. Vansant, J.H. Lunsford, Inorg. Chem. 21(6), 2226–2231 (1982)

    Article  CAS  Google Scholar 

  23. M.S. Niasari, Z. Salimi, M. Bazarganipour, F. Davar, Inorg. Chim. Acta 362, 3715–3724 (2009)

    Article  Google Scholar 

  24. A. Sarkara, S. Pal, Inorg. Chim. Acta 361, 2296–2304 (2008)

    Article  Google Scholar 

  25. M.S. Niasari, Inorg. Chim. Acta 362, 2159–2166 (2008)

    Article  Google Scholar 

  26. M. Tsuchimoto, G. Hoshina, N. Yoshioka, J. Solid State Chem. 153(1), 9–15 (2000)

    Article  CAS  Google Scholar 

  27. J.C. Patrick, L.I. Sara, C.L. Sarah, J. Phys. Chem. A 105(18), 4563–4573 (2001)

    Article  Google Scholar 

  28. S.S. Dodwad, R.S. Dhamnaskar, P.S. Prabhu, Polyhedron 8(13–14), 1748–1750 (1989)

    Article  CAS  Google Scholar 

  29. S.N. Rao, D.D. Mishra, R.C. Maurya, N.R. Nageswara, Polyhedron 16(11), 1825–1829 (1997)

    Article  CAS  Google Scholar 

  30. L.J. Boucher, T.F. Yen, Inorg. Chem. 8(3), 689–692 (1969)

    Article  CAS  Google Scholar 

  31. K.K. Bania, R.C. Deka, J. Phys. Chem. C 115(19), 9601–9607 (2011)

    Article  CAS  Google Scholar 

  32. P.J. Carl, S.C. Larsen, J. Phys. Chem. B. 104(28), 6568–6575 (2000)

    Article  CAS  Google Scholar 

  33. B.R. Shaw, K.E. Creasy, C.J. Lanczycki, J.A. Sargeant, M. Tirhado, J. Electrochem. Soc. 135(4), 869–876 (1988)

    Article  CAS  Google Scholar 

  34. R. Zhang, J. Ma, W. Wang, B. Wang, R. Li, J. Electroanal. Chem. 643(1–2), 31–38 (2010)

    Article  CAS  Google Scholar 

  35. G.J. Alette, Ligtenbarg, H. Ronald, L.F. Ben, Coord. Chem. Rev. 237(1-2), 89–101 (2003)

    Article  Google Scholar 

Download references

Acknowledgments

Authors thank Department of Chemistry, Bangalore University for providing instrumentation facilities and Prof. P. V. Kamath for cyclic voltammetric instrumentation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. Gayathri.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shilpa, E.R., Gayathri, V. & Kiran, G.K. Zeolite-Y encapsulated VO[2-(2′-hydroxyphenyl)benzimidazole] complex: investigation of its catalytic activity towards oxidation of organic substrates. J Porous Mater 24, 275–290 (2017). https://doi.org/10.1007/s10934-016-0261-5

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10934-016-0261-5

Keywords

Navigation