Skip to main content

Advertisement

Log in

Zeolite membranes for hydrogen production from natural gas: state of the art

  • Published:
Journal of Porous Materials Aims and scope Submit manuscript

Abstract

Currently, hydrogen is produced industrially by processes requiring high energy consumption, especially by cracking fossil fuels and by splitting water. In recent years, research has been devoted to the use of membrane catalytic reactors in order to achieve higher hydrogen yield. Zeolite membranes have been shown to be very promising as they are stable to contaminants (such as H2S) and do not have the disadvantages that palladium and silica membranes exhibit. The aim of this work is to summarize the state of the art of hydrogen selective zeolite membranes that can be applied for hydrogen separation after syngas production from reforming streams. In addition, zeolite membrane applications in membrane reactors for hydrogen production are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. National Research Council, The Hydrogen Economy: Opportunities, Costs, Barriers, and R&D Needs (The National Academies Press, Washington, 2004)

    Google Scholar 

  2. Z. Chen, R. John, J.R. Grace, J. Lim, CO2 capture and hydrogen production in an integrated fluidized bed reformer-regenerator system. Ind. Eng. Chem. Res. 50, 4716–4721 (2011)

    Article  CAS  Google Scholar 

  3. B.C.R. Ewan, R.W.K. Allen, A figure of merit assessment of the routes to hydrogen. Int. J. Hydrogen Energy 30, 809–819 (2005)

    Article  CAS  Google Scholar 

  4. J. Caro, M. Noack, P. Kolsch, R. Schafer, Zeolite membranes–state of their development and perspective. Microporous Mesoporous Mater. 38, 3–24 (2000)

    Article  CAS  Google Scholar 

  5. E.E. McLeary, J.C. Jansen, F. Kapteijn, Zeolite based films, membranes and membrane reactors: progress and prospects. Microporous Mesoporous Mater. 90, 198–220 (2006)

    Article  CAS  Google Scholar 

  6. G.Q. Lu, J.C. da Costa, M. Duke, S. Giessler, R. Socolow, R.H. Williams, T. Kreutz, Inorganic membranes for hydrogen production and purification: a critical review and perspective. J. Colloid Interface Sci. 314, 589–603 (2007)

    Article  CAS  Google Scholar 

  7. F. Gallucci, E. Fernandez, P. Corengia, M. van Sint, Annaland, Recent advances on membranes and membrane reactors for hydrogen production. Chem. Eng. Sci. 92, 40–66 (2013)

    Article  CAS  Google Scholar 

  8. M. Du Tessie, M. Motay, M. Marechal, Bull. Soc. Chim. France 9, 334 (1868)

    Google Scholar 

  9. B. Gaudernack, S. Lynum, Hydrogen from natural gas without release of CO2 to the Atmosphere. Int. J. Hydrogen Energy 23, 1087 (1998)

    Article  CAS  Google Scholar 

  10. C.N. Avila-Neto, S.C. Dantas, F.A. Silva, T.V. Franco, L.L. Romanielo, C.E. Hori, A.J. Assis, Hydrogen production from methane reforming. Thermodynamic assessment and auto thermal reactor design. J. Nat. Gas Sci. Eng. 1, 205–215 (2009)

    Article  Google Scholar 

  11. A.L. da Silva, I.L. Müller, Towards H2-rich gas production from unmixed steam reforming of methane: thermodynamic modelling. J. Power Sources 196, 8568–8582 (2011)

    Article  Google Scholar 

  12. www.eia.gov, file: Proved_Reserves_of_Natural_Gas_(Trillion_Cubic_Feet).xls

  13. Y. Chen, H. Xu, Y. Wang, G. Xiong, Hydrogen production from the steam reforming of liquid hydrocarbons in membrane reactor. Catal. Today 118, 136–143 (2006)

    Article  CAS  Google Scholar 

  14. G. Jinsheng (ed.) Coal, Oil, Shale, Natural Bitumen, Heavy Oil and Peat, East China University of Science and Technology (ECUST), China, ISBN: 978-1-84826-467-0, 978-1-84826-468-7

  15. Ch. Higman, S. Tam, Advances, coal gasification, hydrogenation, and gas treating for the production of chemicals and fuels. Chem. Rev. 114, 1673–1708 (2014)

    Article  CAS  Google Scholar 

  16. P. Chiesa, S. Consonni, T. Kreutzb, R. Williams, Co-production of hydrogen, electricity and CO2 from coal with commercially ready technology. Part A: performance and emissions. Int. J. Hydrogen Energy 30, 747–767 (2005)

    Article  CAS  Google Scholar 

  17. C. Cortés, E. Tzimas, S.D. Peteves, Technologies for coal based hydrogen and electricity co-production power plants with CO2 capture (Institute for Energy, European Commission, Luxembourg, 2009)

    Google Scholar 

  18. J.R. Ladebeck, J.P. Wagner, Handbook of fuel cells-fundamentals, technology and applications (Wiley, Chichester, 2003)

    Google Scholar 

  19. Y. Kalinci, A. Hepbasli, I. Dincerc, Biomass-based hydrogen production: a review and analysis. Int. J. Hydrogen Energy 34, 8799–8817 (2009)

    Article  CAS  Google Scholar 

  20. M.C.J. Bradford, M.A. Vannice, CO2 reforming of CH4. Catal. Rev. Sci. Eng. 41, 1–42 (1999)

    Article  CAS  Google Scholar 

  21. P. Gangadharan, K.C. Kanchi, H.H. Lou, Evaluation of the economic and environmental impact of combining dry reforming with steam reforming of methane. Chem. Eng. Res. Des. 90, 1956–1968 (2012)

    Article  CAS  Google Scholar 

  22. W. Kreuter, H. Hofmann, Electrolysis: the important energy transformer in a world of sustainable energy. Int. J. Hydrogen Energy 23, 661–666 (1998)

    Article  CAS  Google Scholar 

  23. J.R. Rostrup-Nielsen, Catalytic steam reforming in catalysis. Science and technology, vol. 5 (Springer, Berlin, 1984)

    Google Scholar 

  24. Y. Shirasaki, T. Tsuneki, Y. Ota, I. Yasuda, S. Tachibana, H. Nakajima, K. Kobayashi, Development of membrane reformer system for highly efficient hydrogen production from natural gas. Int. J. Hydrogen Energy 34, 4482–4487 (2009)

    Article  CAS  Google Scholar 

  25. G. Iaquaniello, F. Giacobbe, B. Morico, S. Cosenza, A. Farace, Membrane reforming in converting natural gas to hydrogen: production costs, Part II. Int. J. Hydrogen Energy 33, 6595–6601 (2008)

    Article  CAS  Google Scholar 

  26. T. Tsuru, K. Yamaguchi, T. Yoshioka, M. Asaeda, In the recent years, research has been devoted to the use catalytic membrane reactors in overcoming the equilibrium limitation. AIChE J. 50, 2794–2805 (2004)

    Article  CAS  Google Scholar 

  27. R.C. Hurlbert, J.O. Konecny, Diffusion of hydrogen through palladium. J. Chem. Phys. 34, 655–658 (1961)

    Article  CAS  Google Scholar 

  28. A. Kulprathipanja, G. Alptekin, J. Falconer, D. Way, Pd and Pd–Cu membranes: inhibition of H2 permeation by H2S. J. Membr. Sci. 254, 49–62 (2005)

    Article  CAS  Google Scholar 

  29. S. Escolástico, C. Solís, J.M. Serra, Hydrogen separation and stability study of ceramic membranes based on the system Nd5LnWO12. Int. J. Hydrogen Energy 36, 1194–1954 (2011)

    Article  Google Scholar 

  30. E. Serra, A.C. Bini, G. Cosoli, L. Pilloni, Hydrogen permeation measurements on alumina. J. Am. Ceram. Soc. 88, 15–18 (2005)

    Article  CAS  Google Scholar 

  31. W.H. Yuan, L.L. Mao, L. Li, Novel SrCe0.75Zr0.20Tm0.05O3−δ membrane for hydrogen separation. Chin. Chem. Lett. 21, 369–372 (2010)

    Article  CAS  Google Scholar 

  32. J. Dong, Y.S. Lin, M. Kanezashi, Z. Tang, Microporous inorganic membranes for high temperature hydrogen purification. J. Appl. Phys. 104, 121301 (2008)

    Article  Google Scholar 

  33. Y.S. Lin, Microporous and dense inorganic membranes: current status and prospective. Sep. Purif. Technol. 25, 39–55 (2001)

    Article  CAS  Google Scholar 

  34. J. Gascon, F. Kapteijn, Metal-organic framework membranes—high potential, bright future? Angew. Chem. 49, 1530–1532 (2010)

    Article  CAS  Google Scholar 

  35. M. Shah, M.C. McCarthy, S. Sachdeva, A.K. Lee, H.-K. Jeong, Current status of metal-organic framework membranes for gas separations: promises and challenges. Ind. Eng. Chem. Res. 51, 2179–2219 (2012)

    Article  CAS  Google Scholar 

  36. N.W. Ockwig, T.M. Nenoff, Membranes for hydrogen separation. Chem. Rev. 107, 4078–4110 (2007)

    Article  CAS  Google Scholar 

  37. H. Verweij, Y.S. Lin, J.H. Dong, Microporous silica and zeolite membranes for hydrogen purification. MRS Bull. 31, 756–764 (2006)

    Article  CAS  Google Scholar 

  38. J. Rothfleisch, Hydrogen from Methanol for Fuel Cells. SAE Technical Paper, 640377 (1964)

  39. S. Albert Jr, Large zeolites: why and how to grow in space. Proc. SPIE Int. Soc. Opt. Eng. Proc. SPIE. 1557, 6–9 (1991)

    Google Scholar 

  40. J. Coronas, J. Santamaria, State-of-the-art in zeolite membrane reactors. Top. Catal. 29, 29–44 (2004)

    Article  CAS  Google Scholar 

  41. M. Yu, R.D. Noble, J.L. Falconer, Zeolite membranes: microstructure characterization and permeation mechanisms. Acc. Chem. Res. 44, 1196–1206 (2011)

    Article  CAS  Google Scholar 

  42. C. Baerlocher, W.M. Meier, D.H. Olson, Atlas of zeolite framework types (Elsevier, Amsterdam, 2001)

    Google Scholar 

  43. Y.S. Lin, I. Kumakiri, B.N. Nair, H. Alsyouri, Microporous inorganic membranes. Sep. Purif. Meth. 31, 229–379 (2002)

    Article  CAS  Google Scholar 

  44. S. Mohanty, A.V. McCormick, Prospects for principles of size and shape selective separations using zeolites. Chem. Eng. J. 74, 1–14 (1999)

    Article  CAS  Google Scholar 

  45. J. Caro, M. Noack, P. Kolsch, Zeolite membranes: from the laboratory scale to technical applications. Adsorption 11, 215–227 (2005)

    Article  CAS  Google Scholar 

  46. M. Kanezashi, J. O’Brien-Abraham, Y.S. Lin, K. Suzuki, Gas permeation through DDR - type zeolite membranes at high temperatures. AIChE J. 54, 1478–1486 (2008)

    Article  CAS  Google Scholar 

  47. S.T. Oyama, S.M. Stagg-Williams, Inorganic polymeric and composite membranes: structure function and other correlations (Elsevier, Amesterdam, 2011)

    Google Scholar 

  48. N. Mehio, S. Dai, D. Jiang, Quantum mechanical basis for kinetic diameters of small gaseous molecules. J. Phys. Chem. A 118, 1150–1154 (2014)

    Article  CAS  Google Scholar 

  49. S. Kulprathipanja, Zeolites in Industrial Separation and Catalysis (Wiley, Weinheim, 2010)

    Book  Google Scholar 

  50. A.K. Pabby, S.S.H. Rizvi, A.M.S. Requena, Handbook of Membrane Separations: Chemical, Pharmaceutical, Food, and Biotechnological Applications (CRC Press, Boca Raton, 2008)

    Book  Google Scholar 

  51. E. van Steen, L.H. Callanan, M. Claeys, Recent Advances in the Science and Technology of Zeolites and Related Materials Series: Studies in Surface Science and Catalysis (Book 154) (Elsevier, New York, 2005)

    Google Scholar 

  52. T.C. Bowen, R.D. Noble, J.L. Falconer, Fundamentals and applications of pervaporation through zeolite membranes. J. Membr. Sci. 245, 1–33 (2004)

    Article  CAS  Google Scholar 

  53. M.C. Lovallo, A. Gouzinis, M. Tsapatsis, Synthesis and characterization of oriented MFI membranes prepared by secondary growth. AIChE J. 44, 1903–1913 (1998)

    Article  CAS  Google Scholar 

  54. J. Ma, J. Shao, Z. Wang, Y. Yan, Preparation of zeolite naa membranes on macroporous alumina supports by secondary growth of gel layers. Ind. Eng. Chem. Res. 53, 6121–6130 (2014)

    Article  CAS  Google Scholar 

  55. Z. Wang, Q. Ge, J. Shao, Y. Yan, High performance zeolite LTA pervaporation membranes on ceramic hollow fibers by dipcoating − wiping seed deposition. J. Am. Chem. Soc. 131, 6910–6911 (2009)

    Article  CAS  Google Scholar 

  56. C.J. Gump, X. Lin, J.L. Falconer, R.D. Noble, Experimental configuration and adsorption effects on the permeation of C4 isomers through ZSM-5 zeolite membranes. J. Membr. Sci. 173, 35–52 (2000)

    Article  CAS  Google Scholar 

  57. M.C. Lovallo, M. Tsapatsis, Preferentially oriented submicron silicalite membranes. AIChE J. 42, 3020–3029 (1996)

    Article  CAS  Google Scholar 

  58. R. Lai, G.R. Gavalas, ZSM-5 membrane synthesis with organic-free mixtures. Microporous Mesoporous Mater. 38, 239–245 (2000)

    Article  CAS  Google Scholar 

  59. M. Hong, J.L. Falconer, R.D. Noble, Modification of zeolite membranes for H2 separation by catalytic cracking of methyldiethoxysilane. Ind. Eng. Chem. Res. 44, 4035–4041 (2005)

    Article  CAS  Google Scholar 

  60. A.J. Burggraaf, Single gas permeation of thin zeolite (MFI) membranes: theory and analysis of experimental observations. J. Membr. Sci. 155, 45–65 (1999)

    Article  CAS  Google Scholar 

  61. J. Xiao, J. Wei, Diffusion mechanism of hydrocarbons in zeolitess. Theory Chem. Eng. Sci. 47, 1123–1141 (1992)

    Article  CAS  Google Scholar 

  62. M. Niwa, H. Itoh, S. Kato, T. Hattori, Y. Murakami, Modification of H-mordenite by a vapour-phase deposition method. J. Chem. Soc. Chem. Commun. 819–820 (1982)

  63. M. Niwa, S. Kato, T. Hattori, Y. Murakami, Fine control of the pore-opening size of the zeolite mordenite by chemical vapour deposition of silicon alkoxide. J. Chem. Soc. Faraday Trans. I 80, 3135–3145 (1984)

    Article  CAS  Google Scholar 

  64. J.H. Kim, Y. Ikoma, M. Niwa, Control of the pore-opening size of HY zeolite by CVD of silicon alkoxide. Microporous Mesoporous Mater. 32, 37–44 (1999)

    Article  CAS  Google Scholar 

  65. T. Masuda, N. Fukumoto, M. Kitamura, S.R. Mukai, K. Hashimoto, T. Tanaka, T. Funabiki, Modification of pore size of MFI-type zeolite by catalytic cracking of silane and application to preparation of H2-separating zeolite membrane. Microporous Mesoporous Mater. 48, 239–245 (2001)

    Article  CAS  Google Scholar 

  66. X. Gu, Z. Tang, Dong J. On-stream modification of MFI zeolite membranes for enhancing hydrogen separation at high temperature. Microporous Mesoporous Mater. 111, 441–448 (2008)

    Article  CAS  Google Scholar 

  67. M. Kanezashi, Y.S. Lin, Gas permeation and diffusion characteristics of MFI-type zeolite membranes at high temperatures. J. Phys. Chem. C 113, 3767–3774 (2009)

    Article  CAS  Google Scholar 

  68. X. Zhu, H. Wang, Y.S. Lin, Effect of the membrane quality on gas permeation and chemical vapor deposition modification of MFI-type zeolite membranes. Ind. Eng. Chem. Res. 49, 10026–10033 (2010)

    Article  CAS  Google Scholar 

  69. H. Wang, Y.S. Lin, Effects, synthesis conditions on MFI zeolite membrane quality and catalytic cracking deposition modification results. Microporous Mesoporous Mater. 142, 481–488 (2011)

    Article  CAS  Google Scholar 

  70. H. Wang, Y.S. Lin, Synthesis and modification of ZSM-5/silicalite bilayer membrane with improved hydrogen separation performance. J. Membr. Sci. 396, 128–137 (2012)

    Article  CAS  Google Scholar 

  71. Z. Hong, F. Sun, D. Chen, C. Zhang, X. Gu, N. Xu, Improvement of hydrogen-separating performance by on-stream catalytic cracking of silane over hollow fiber MFI zeolite membrane, nt. J. Hydrogen Energy 39, 4739–4748 (2014)

    Article  Google Scholar 

  72. Z. Hong, Z. Wu, Y. Zhang, X. Gu, Catalytic cracking deposition of methyldiethoxysilane for modification of zeolitic pores in MFI/α-Al2O3 zeolite membrane with H + ion exchange pretreatment. Ind. Eng. Chem. Res. 52, 13113–13119 (2013)

    Article  CAS  Google Scholar 

  73. K. Aoki, K. Kusakabe, S. Morooka, Gas permeation properties of A-type zeolite membrane formed on porous substrate by hydrothermal synthesis. J. Membr. Sci. 141, 197–205 (1998)

    Article  CAS  Google Scholar 

  74. X. Xu, W. Yang, J. Liu, L. Lin, Synthesis of a high-permeance NaA zeolite membrane by microwave heating. Adv. Mater. 12, 195–198 (2000)

    Article  CAS  Google Scholar 

  75. Z. Lixiong, J.M. Dong, M. Enze, Synthesis of SAPO-34/ceramic composite membranes. Stud. Surf. Sci. Catal. 105, 2211–2216 (1997)

    Article  Google Scholar 

  76. M. Hong, S. Li, J.L. Falconer, R.D. Noble, Hydrogen purification-34 membrane. J. Membr. Sci. 307, 277–283 (2008)

    Article  CAS  Google Scholar 

  77. J.C. Poshusta, V.A. Tuan, E.A. Pape, R.D. Noble, J.L. Falconer, Separation of light gas mixtures using SAPO-34 membranes. AIChE J. 46, 779–789 (2000)

    Article  CAS  Google Scholar 

  78. J.C. Poshusta, V.A. Tuan, J.L. Falconer, R.D. Noble, Synthesis and permeation properties of SAPO-34 tubular membranes. Ind. Eng. Chem. Res. 37, 3924–3929 (1998)

    Article  CAS  Google Scholar 

  79. J. Dong, Y.S. Lin, In situ synthesis of P-type zeolite membranes on porous α-alumina supports. Ind. Eng. Chem. Res. 37, 2404–2409 (1998)

    Article  CAS  Google Scholar 

  80. K. Weh, M. Noack, I. Sieber, J. Caro, Permeation of single gases and gas mixtures through faujasite-type molecular sieve membranes. Microporous Mesoporous Mater. 54, 27–36 (2002)

    Article  CAS  Google Scholar 

  81. G. Guan, T. Tanaka, K. Kusakabe, K.I. Sotowa, S. Morooka, Characterization of AlPO4-type molecular sieving membranes formed on a porous α-alumina tube. J. Membr. Sci. 214, 191–198 (2003)

    Article  CAS  Google Scholar 

  82. W.J. Koros, R. Mahajan, Pushing the limits on possibilities for large scale gas separation: which strategies? J. Membr. Sci. 175, 181–196 (2000)

    Article  CAS  Google Scholar 

  83. J. Coronas, J. Santamaria, The use of zeolite films in small-scale and micro-scale applications. Chem. Eng. Sci. 59, 4879–4885 (2004)

    Article  CAS  Google Scholar 

  84. J. Choi, M. Tsapatsis, MCM-22/silica selective flake nanocomposite membranes for hydrogen separations. J. Am. Chem. Soc. 132, 448–449 (2010)

    Article  CAS  Google Scholar 

  85. Z. Tang, S.J. Kim, G.K. Reddy, J. Dong, P. Smirniotis, Modified zeolite membrane reactor for high temperature water gas shift reaction. J. Membr. Sci. 354, 114–122 (2010)

    Article  CAS  Google Scholar 

  86. S.J. Kim, Z. Xu, G.K. Reddy, P. Smirniotis, J. Dong, Effect of pressure on high-temperature water gas shift reaction in microporous zeolite membrane reactor. Ind. Eng. Chem. Res. 51, 1364–1375 (2012)

    Article  CAS  Google Scholar 

  87. S.J. Kim, S. Yang, G.K. Reddy, P. Smirniotis, J. Dong, Zeolite membrane reactor for high-temperature water-gas shift reaction: effects of membrane properties and operating conditions. Energy Fuels 27, 4471–4480 (2013)

    Article  CAS  Google Scholar 

  88. H. Wang, X. Dong, Y.S. Lin, Highly stable bilayer MFI zeolite membranes for high temperature hydrogen separation. J. Membr. Sci. 450, 425–432 (2014)

    Article  CAS  Google Scholar 

  89. Y. Zhang, Z. Wu, Z. Hong, X. Gu, N. Xu, Hydrogen-selective zeolite membrane reactor for low temperature water gas shift reaction. Chem. Eng. J. 197, 314–321 (2012)

    Article  CAS  Google Scholar 

  90. B.S. Liu, L.Z. Gao, C.T. Au, Preparation, characterization and application of a catalytic NaA membrane for CH4/CO2 reforming to syngas. Appl. Catal. A Gener. 235, 193–206 (2002)

    Article  CAS  Google Scholar 

  91. M.L. Bosko, J.F. Múnera, E.A. Lombardo, L.M. Cornaglia, Dry reforming of methane in membrane reactors using Pd and Pd–Ag composite membranes on a NaA zeolite modified porous stainless steel support. J. Membr. Sci. 364, 17–26 (2010)

    Article  CAS  Google Scholar 

  92. Y. Kim, P.K. Dutta, An integrated zeolite membrane/RuO2 photocatalyst system for hydrogen production. J. Phys. Chem. C 111, 10575–10581 (2007)

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Beata Michalkiewicz.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Michalkiewicz, B., Koren, Z.C. Zeolite membranes for hydrogen production from natural gas: state of the art. J Porous Mater 22, 635–646 (2015). https://doi.org/10.1007/s10934-015-9936-6

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10934-015-9936-6

Keywords

Navigation