Skip to main content

Advertisement

Log in

Why we need more paleolimnology studies in the tropics

  • note
  • Published:
Journal of Paleolimnology Aims and scope Submit manuscript

Abstract

The state of paleolimnology in the tropics was analyzed using articles published between 1997 and 2015 in the Journal of Paleolimnology, and in other international and tropical-country-based journals. Results showed that most paleolimnological studies have been carried out in high-latitude regions. About 40% of the lakes on Earth, representing almost one-third of global lake surface area, lie within tropical latitudes. Yet in comparison to the number of paleolimnological investigations in higher-latitude lakes, there have been relatively few studies in the tropics. Our goal was to evaluate whether there has been a shift in the relative amount of effort directed toward paleolimnological work in tropical regions over the last quarter century, and if not, to call for more paleolimnological studies in the tropics and suggest ways to remedy the geographic disparity. Our analysis showed that paleolimnological studies in the tropics still lag far behind efforts at higher latitudes, prompting us to encourage more work focusing in tropical regions. To do so will require more funding from local research agencies to support paleolimnological work and train local scientists. We recommend that funded investigators from extra-tropical, developed countries should work in close collaboration with local scientists in the nations where studies are carried out, and that local students should be involved. Steps should also be taken to encourage students from tropical countries to attend international scientific meetings that focus on paleolimnology. Lastly, more such symposia should be held in tropical countries. Paleolimnological research at low latitudes can address pressing environmental issues in tropical environments, such as the effects of rapid land-use change, the eutrophication and pollution of local water bodies, and recent climate change.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Adrian R, O’Reilly CM, Zagarese H, Baines SB, Hessen DO, Keller W, Livingstone DM, Sommaruga R, Straile D, Van Donk E, Weyhenmeyer GA, Winder M (2009) Lakes as sentinels of climate change. Limnol Oceanogr 54:2283–2297

    Article  Google Scholar 

  • Baker PA, Fritz SC, Garland J, Ekdahl E (2005) Holocene hydrologic variation at Lake Titicaca, Bolivia/Peru, and its relationship to North Atlantic climate variation. J Quat Sci 20:655–666

    Article  Google Scholar 

  • Bastviken D, Tranvik LJ, Downing JA, Crill PM, Enrich-Prast A (2011) Freshwater methane emissions offset the continental carbon sink. Science 331:50

    Article  Google Scholar 

  • Behling H (1995) A high resolution Holocene pollen record from Lago do Pires, SE Brazil: vegetation, climate and fire history. J Paleolimnol 14:253–268

    Article  Google Scholar 

  • Bennion H, Battarbee RW, Sayer CD, Simpson GL, Davidson TA (2011) Defining reference conditions and restoration targets for lake ecosystems using palaeolimnology: a synthesis. J Paleolimnol 45:533–544

    Article  Google Scholar 

  • Bird BW, Abbott MB, Vuille M, Rodbell DT, Rosenmeier MF, Stansell ND (2011) A 2300-year-long annually-resolved lake sediment record of the South American Summer Monsoon from Laguna Pumacocha, Peru. Proc Natl Acad Sci (USA) 108:8583–8588

    Article  Google Scholar 

  • Bogota-A RG, Groot MHM, Hooghiemstra H, Lourens LJ, Van der Linden M, Berrio JC (2011) Rapid climate change from north Andean Lake Fuquene pollen records driven by obliquity: implications for a basin-wide biostratigraphic zonation for the last 284 ka. Quat Sci Rev 30:3321–3337

    Article  Google Scholar 

  • Bränvall ML, Bindler R, Emteryd O, Renberg I (2001) Four thousand years of atmospheric lead pollution in northern Europe: a summary from Swedish lake sediments. J Paleolimnol 25:421–435

    Article  Google Scholar 

  • Brenner M (1995) A call for paleolimnology studies in the tropics. J Paleolimnol 13:89–92

    Article  Google Scholar 

  • Brenner M, Escobar J (2009) Ontogeny of Aquatic Ecosystems. In: Likens GE (ed) Encyclopedia of inland waters, vol 1. Elsevier, Oxford, pp 456–461

    Chapter  Google Scholar 

  • Bush MB, Silman MR, Urrego DH (2004) 48,000 years of climate and forest change in a biodiversity hotspot. Science 303:827–829

    Article  Google Scholar 

  • Charles DF, Binford MW, Fry BD, Furlong E, Hites RA, Mitchell M, Norton SA, Patterson MJ, Smol JP, Uutala AJ, White JR, Whitehead DR, Wise RJ (1990) Paleoecological investigation of recent lake acidification in the Adirondack Mountains, N.Y. J Paleolimnol 3:195–241

    Google Scholar 

  • Cohen AS, Gergurich EL, Kraemer BM, McGlue MM, McIntyre PB, Russell JM, Simmons JD, Swarzenski PW (2016) Climate warming reduces fish production and benthic habitat in Lake Tanganyika, one of the most biodiverse freshwater ecosystems. Proc Natl Acad Sci (USA) 113:9563–9568

    Article  Google Scholar 

  • Cole JJ, Prairie YT, Caraco NF, McDowell WH, Tranvik LJ, Striegl RG, Duarte CM, Koterlainen P, Downing JA, Melack JM (2007) Plumbing the global carbon cycle: integrating inland waters into the terrestrial carbon budget. Ecosystems 10:171–184

    Article  Google Scholar 

  • Colinvaux PA (1972) Climate and the Galapagos islands. Nature 240:17–20

    Article  Google Scholar 

  • Conroy JL, Overpeck JT, Cole JE, Shanahan TM, Steinitz-Kannan M (2008) Holocene changes in eastern tropical Pacific climate inferred from a Galápagos lake sediment record. Quat Sci Rev 27:1166–1180

    Article  Google Scholar 

  • Cooke CA, Prentiss HB, Biester H, Wolfe AP (2009) Over three millennia of mercury pollution in the Peruvian Andes. Proc Natl Acad Sci (USA) 106:8830–8834

    Article  Google Scholar 

  • Correa-Metrio A, Bush MB, Cabrera KR, Sully S, Brenner M, Hodell DA, Escobar J, Guilderson T (2012) Rapid climate change and no-analog vegetation in lowland Central America during the last 86,000 years. Quat Sci Rev 38:63–75

    Article  Google Scholar 

  • Correa-Metrio A, Velez MI, Escobar J, St-Jacques JM, Lopez-Perez M, Curtis J, Cosford J (2016) Mid-elevation ecosystems of Panama: future uncertainties in light of past global climatic variability. J Quat Sci 31:731–740

    Article  Google Scholar 

  • Curtis JH, Hodell DA, Brenner M (1996) Climate variability on the Yucatan Peninsula (Mexico) during the post 3500 years, and implications for Maya cultural evolution. Quat Res 46:37–47

    Article  Google Scholar 

  • Davis RB (1989) The scope of quaternary paleolimnology. J Paleolimnol 2:263–283

    Article  Google Scholar 

  • Davis RB, Anderson DS, Norton SA, Whiting MC (1994) Acidity of twelve northern New England (U.S.A) lakes in recent centuries. J Paleolimnol 12:103–154

    Article  Google Scholar 

  • De Geer G (1912) A geochronology of the last 12,000 years. In: Congress geological international Stockholm 1910, C.R., pp 241–253

  • Dearing JA, Yang X, Dong X, Zhang E, Chen X, Langdon PG, Zhang K, Zhang W, Dawson TP (2012) extending the timescale and range of ecosystem services through paleoenvironmental analyses, exemplified in the lower Yangtze basin. Proc Natl Acad Sci (USA) 109:E1111–E1120

    Article  Google Scholar 

  • Elmer KR, Reggio C, Wirth T, Verheyen E, Salzburger W, Meyer A (2009) Pleistocene desiccation en East Africa bottlenecked but did not extirpate the adaptive radiation of Lake Victoria haplochromine cichlid fishes. Proc Natl Acad Sci (USA) 106:13404–13409

    Article  Google Scholar 

  • Engstrom DR, Fitzgerald WF, Cooke CA, Lamborg CH, Drevnick PE, Swain EB, Balogh SJ, Balcom PH (2014) Atmospheric Hg emissions from preindustrial gold and silver extraction in the Americas: a reevaluation from lake-sediment archives. Environ Sci Technol 48:6533–6543

    Article  Google Scholar 

  • Escobar J, Hodell DA, Brenner M, Curtis JH, Gilli A, Mueller AD, Anselmetti FS, Ariztegui D, Grzesik DA, Perez L, Schwalb A, Guilderson TP (2012) A ~ 43-ka record of paleoenvironmental change in the Central American lowlands inferred from stable isotopes of lacustrine ostracods. Quat Sci Rev 37:92–104

    Article  Google Scholar 

  • Hodell D, Curtis JH, Brenner M (1995) Possible role of climate in the collapse of Classic Maya civilization. Nature 375:391–394

    Article  Google Scholar 

  • Horn S (2010) Pre-Columbian maize agriculture in Costa Rica: Pollen and other evidence from lake and swamp sediments. In: Staller JE, Tykot RH, Benz BF (eds) Histories of maize in Mesoamerica. Routledge, New York, pp 104–117

    Google Scholar 

  • Hutchinson GE, Patrick R, Deevey ES (1956) Sediments of Lake Parzcuaro, Michoacan, Mexico. Bull Geol Soc Am 67:1491–1504

    Article  Google Scholar 

  • Ivory SJ, Blome MW, King JW, McGlue MM, Cole JE, Cohen AS (2016) Environmental change explains cichlid adaptive radiation at Lake Malawi over the past 1.2 million years. Proc Natl Acad Sci (USA) 113:11895–11900

    Article  Google Scholar 

  • Ivory SJ, McGlue MM, Ellis GS, Boehlke A, Lézine AM, Vincens A, Cohen AS (2017) East African weathering dynamics controlled by vegetation-climate feedbacks. Geology 45:823–826

    Article  Google Scholar 

  • Kingston JC, Cook RB, Kreis RG, Camburn KE, Norton SA, Sweets PR, Binford MW, Mitchell MJ, Schindler SC, Shane LCK, King GA (1990) Paleoecological investigation of recent acidification in the northern Great Lakes states. J Paleolimnol 4:153–201

    Article  Google Scholar 

  • Livingston DA (1975) Late quaternary climatic change in Africa. Annu Rev Ecol Syst 6:249–280

    Article  Google Scholar 

  • Lotter AF (1998) The recent eutrophication of Baldeggersee (Switzerland) as assessed by fossil diatom assemblages. Holocene 8:395–405

    Article  Google Scholar 

  • Polisssar PJ, Abbott MB, Wolfe AP, Vuille M, Bezada M (2013) Synchronous interhemispheric Holocene climate trends in the tropical Andes. Proc Natl Acad Sci (USA) 110:14551–14556

    Article  Google Scholar 

  • Quinlan R, Hall RI, Paterson AM, Cumming BF, Smol JP (2008) Long-term assessments of ecological effects of anthropogenics stressors on aquatic ecosystems from paleoecological analyses: challenges to perspectives of lake management. Can J Fish Aquat Sci 65:933–944

    Article  Google Scholar 

  • Raymond PA, Hartmann J, Lauerwald R, Sobek S, McDonald C, Hoover M, Butman D, Striegl R, Mayorga E, Humborg C, Kortelainen P, Durr H, Meybeck M, Ciais P, Guth P (2013) Global carbon dioxide emissions from inland waters. Nature 503:355–359

    Article  Google Scholar 

  • Renberg I, Persson MW, Emteryd O (1994) Pre-industrial atmospheric lead contamination detected in Swedish lake sediments. Nature 368:323–326

    Article  Google Scholar 

  • Russell JM, Vogel H, Konecky BL, Bijaksana S, Huang Y, Melles M, Wattrus N, Costa K, King JW (2014) Glacial forcing of central Indonesian hydroclimate since 60,000 y BP. Proc Natl Acad Sci (USA) 111:5100–5105

    Article  Google Scholar 

  • Scholz CA, Johnson TC, Cohen AS, King JW, Peck JA, Overpeck JT, Talbot MR, Brown ET, Kalindekafe L, Amoako PYO, Lyons RP, Shanahan TM, Castañeda IS, Heil CW, Forman SL, McHargue LR, Beuning KR, Gomez J, Pierson J (2007) East African megadroughts between 135 and 75 thousand years ago and bearing on early-modern human origins. Proc Natl Acad Sci (USA) 104:16416–16421

    Article  Google Scholar 

  • Serna Y, Correa-Metrio A, Curtis JH, Velez MI, Brenner M, Kenney W, Hoyos N, Restrepo JC, Cordero-Oviedo C, Buck D, Suarez N, Escobar J (2020) Post-colonial pollution of the Bay of Cartagena, Colombia. J Paleolimnol 63:21–35

    Article  Google Scholar 

  • Smol JP (1992) Paleolimnology: an important tool for effective ecosystem management. J Aquat Ecosyst Health 1:49–58

    Article  Google Scholar 

  • Smol JP (2010) The power of the past: using lake sediments to track the effects of multiple stressors on lake ecosystems. Freshw Biol 55:43–59

    Article  Google Scholar 

  • Steenstrup JJS (1841) Geognostisk-geologisk Undersögelse af Skovmoserne Vidnesdam-og Lillemose i det Nordlige Sjælland, Ledsaget af Sammenlignende Bemærkninger. Hentede fra Danmarks Skov-Kjær-og Lyngmoser Lalmindelighed, Copenhagen

    Google Scholar 

  • Stoermer EF, Emmert G, Julius ML, Schelske CL (1996) Paleolimnological evidence of rapid recent change in Lake Erie’s trophic status. Can J Fish Aquat Sci 53:1451–1458

    Article  Google Scholar 

  • Tierney JE, Russell JM, Huang Y, Damsté JSS, Hopmans EC, Cohen AS (2008) Northern hemisphere controls on tropical southeast African climate during the past 60,000 years. Science 322:252–255

    Article  Google Scholar 

  • Torres V, Hooghiemstra H, Lourens L, Tzedakis PC (2013) Astronomical tuning of long pollen records reveals the dynamic history of montane biomes and lake levels in the tropical high Andes during the quaternary. Quat Sci Rev 63:59–72

    Article  Google Scholar 

  • Van der Hammen T, González E (1960) Holocene and late glacial climate and vegetation of Páramo de Palacio (Eastern Cordillera, Colombia, South America). Geol Mijnbouw 39:737–746

    Google Scholar 

  • Velez MI, Conde D, Lozoya J, Rusak J, García-Rodríguez F, Seitz C, Harmon T, Perillo G, Escobar J, Vilardy S (2018) paleoenvironmental reconstructions improve ecosystem services risk assessment: case studies from two coastal lagoons in South America. Water 10:1350

    Article  Google Scholar 

  • Verpoorter C, Kutser T, Tranvik L (2012) Automated mapping of water bodies using Landsat multispectral data. Limnol Oceanogr Methods 10:1037–1050

    Article  Google Scholar 

  • Verpoorter C, Kutser T, Seekell DA, Tranvik LJ (2014) A global inventory of lakes based on high-resolution satellite imagery. Geophys Res Lett 41:6396–6402

    Article  Google Scholar 

  • Williamson CE, Saros JE, Vincent WF, Smol JP (2009) Lakes and reservoirs as sentinels, integrators, and regulators of climate change. Limnol Oceanogr 54:2273–2282

    Article  Google Scholar 

  • Wolfe AP, Baron JS, Cornett RJ (2001) Anthropogenic nitrogen deposition induces rapid ecological change in alpine lakes of the Colorado Front Range (USA). J Paleolimnol 25:1–7

    Article  Google Scholar 

Download references

Acknowledgements

JE and YS worked equally on the manuscript. JE, YS, NH, and MV were supported, in part, by a Grant from the Inter-American Institute for Global Change Research (IAI) CRN3038, which is supported by the US National Science Foundation (Grant GEO-1128040). JE and NH were supported, in part, by scholarships from the Queen Elizabeth II Diamond Jubilee Program. NH received partial support from the Fulbright Visiting Scholar Program. We thank Mark Brenner and two anonymous reviewers for their comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jaime Escobar.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Escobar, J., Serna, Y., Hoyos, N. et al. Why we need more paleolimnology studies in the tropics. J Paleolimnol 64, 47–53 (2020). https://doi.org/10.1007/s10933-020-00120-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10933-020-00120-6

Keywords

Navigation