Skip to main content
Log in

New Synthetic Peptides Conjugated to Gold Nanoclusters: Antibiotic Activity Against Escherichia coli O157:H7 and Methicillin-Resistant Staphylococcus aureus (MRSA)

  • Published:
The Protein Journal Aims and scope Submit manuscript

Abstract

Gold nanoclusters protected with bovine serum albumin (AuNC) can be used in multiple biomedical applications through functionalization with two new and bioactive peptides. Both cationic peptides sequences of 17 amino acids in length and the cysteine residue at its C-terminus were designed and synthesized. Peptides were obtained by solid phase synthesis using the Fmoc strategy. Peptides may be coupled via disulfide bonds to AuNC with hydrodynamic size ~ 2 nm ± 0.3 determined by dynamic light scattering and it had a zeta potential value equal to − 42 mV. Peptides named NBC2253 and NBC2254 were attached to the AuNC using N-succinimidyl-3-(2-pyridyl-dithiol) propionate as crosslinker agent. AuNC@NBC2253 was more active against methicillin-resistant Staphylococcus aureus (MIC50 6.5 µM) and AuNC@NBC2254 exhibited higher antimicrobial activity than the free peptides on Escherichia coli O157:H7 (MIC50 3.5 µM). No hemolysis was detected for any of the peptides. It is evidenced that these antimicrobial peptides conjugated to AuNC serve as promising agents to combat some multi-resistant bacterial strains and that the specific binding of these antimicrobial peptides to gold nanoclusters improves the interaction of these nanostructured systems with the biological target.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Vigderman L, Zubarev ER (2013) Therapeutic platforms based on gold nanoparticles and their covalent conjugates with drug molecules. Adv Drug Deliv Rev 65:663–676

    Article  CAS  PubMed  Google Scholar 

  2. Kogan MJ, Olmedo I, Hosta L, Guerrero AR, Cruz LJ, Albericio F (2007) Peptides and metallic nanoparticles for biomedical applications. Nanomedicine 2:287–306

    Article  CAS  PubMed  Google Scholar 

  3. Liu Y, Shipton MK, Ryan J, Kaufman ED, Franzen S, Feldheim DL (2007) Synthesis, stability, and cellular internalization of gold nanoparticles containing mixed peptide–poly(ethylene glycol) monolayers. Anal Chem 79:2221–2229

    Article  CAS  PubMed  Google Scholar 

  4. Brogden KA (2011) In: Drider D, Rebaffat S (eds) Perspectives and peptides of the next generation”, in Prokaryotic antimicrobial peptides: genes to applications. Springer, New York

    Google Scholar 

  5. Yount NY, Bayer AS, Xiong YQ (2006) Advances in antimicrobial peptide immunobiology 84:435–458

    CAS  Google Scholar 

  6. Markman JL, Rekechenetskiy A, Holler E, Ljubimova JY (2013) Nanomedicine therapeutic approaches to overcome cancer drug resistance. Adv Drug Deliv Rev 65:1866–1879

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Brandelli A (2012) Nanostructures as promising tools for delivery of antimicrobial peptides. Mini Rev Med Chem 12:731–741

    Article  CAS  PubMed  Google Scholar 

  8. Narla SN, Pinnamaneni P, Nie H, Li Y, Sun XL (2014) BSA-boronic acid conjugate as lectin mimetics. Biochem Biophys Res Commun 443:562–567

    Article  CAS  PubMed  Google Scholar 

  9. Zhang M, Dang YQ, Liu TY, Li HW, Wu Y, Li Q, Wang K, Zou B (2013) Pressure-induced fluorescence enhancement of the BSA-protected gold nanoclusters and the corresponding conformational changes of protein. J Phys Chem 117:639–647

    CAS  Google Scholar 

  10. Ming X, Carver K, Wu L (2013) Albumin-based nanoconjugates for targeted delivery of therapeutic oligonucleotides. Biomaterials 34:7939–7949

    Article  CAS  PubMed  Google Scholar 

  11. Zhang L, Pornpattananangkul D, Hu CJ, Huang C (2010) Development of nanoparticles for antimicrobial drug delivery. Curr Med Chem 17:585–594

    Article  CAS  PubMed  Google Scholar 

  12. Ding H, Yang D, Zhao C, Song Z, Liu P, Wang Y, Chen Z, Shen J (2015) Protein-gold hybrid nanocubes for cell imaging and drug delivery. ACS Appl Mater Interfaces 7:4713–4719

    Article  CAS  PubMed  Google Scholar 

  13. Lin CAJ, Chuang WK, Huang ZY, Kang ST, Chang CY, Chen CT, Li JL, Li JK, Wang HH, Kung FC, Shen JL, Chan WH, Yeh CK, Yeh HI, Lai WFT, Chang WH (2012) Rapid transformation of protein-caged nanomaterials into microbubbles as bimodal imaging agents. ACS Nano 6:5111–5121

    Article  CAS  PubMed  Google Scholar 

  14. Prada YA, Guzmán F, Rondón R, Escobar P, Ortiz C, Sierra DA, Torres R, Mejía-Ospino E (2016) A new synthetic peptide with in vitro antibacterial potential against Escherichia coli O157: H7 and methicillin-resistant Staphylococcus aureus (MRSA). Probiotics Antimicrob Proteins 8:134–140

    Article  CAS  PubMed  Google Scholar 

  15. Jofré C, Guzmán F, Cárdenas C, Albericio F, Marshall SH (2011) A natural peptide and its variants derived from the processing of infectious pancreatic necrosis virus (IPNV) displaying enhanced antimicrobial activity: a novel alternative for the control of bacterial diseases. Peptides 32:852–858

    Article  CAS  PubMed  Google Scholar 

  16. Gopal R, Park JS, Seo CH, Park Y (2012) Applications of circular dichroism for structural analysis of gelatin and antimicrobial peptides. Int J Mol Sci 13:3229–3244

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Xie J, Zheng Y, Ying JY (2009) Protein-directed synthesis of highly fluorescent gold nanoclusters. J Am Chem Soc 131:888–889

    Article  CAS  PubMed  Google Scholar 

  18. Yuan X, Luo Z, Zhang Q, Zhang X, Zheng Y, Lee JY, Xie J (2011) Synthesis of highly fluorescent metal (Ag, Au, Pt, and Cu) nanoclusters by electrostatically induced reversible phase transfer. ACS Nano 5:8800–8808

    Article  CAS  PubMed  Google Scholar 

  19. Ojeda N, Cárdenas C, Guzmán F, Marshall H (2016) Chemical synthesis and in vitro evaluation of a phage display derived peptide active against infectious salmon anemia virus. Appl Environ Microbiol 82:2563–2571

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Cruz J, Ortiz C, Guzmán F, Torres R (2014) Antimicrobial peptides: promising compounds against pathogenic microorganisms. Curr Med Chem 21:2299–2321

    Article  CAS  PubMed  Google Scholar 

  21. Yahia-ammar A, Sierra D, Me F (2016) Self-assembled gold nanoclusters for bright fluorescence imaging and enhanced drug delivery. ACS Nano 10:2591–2599

    Article  CAS  PubMed  Google Scholar 

  22. Cao X, Li H, Lian L, Xu N, Lou D, Wu Y (2015) A dual-responsive fluorescence method for the detection of clenbuterol based on BSA-protected gold nanoclusters. Anal Chim Acta 871:43–50

    Article  CAS  PubMed  Google Scholar 

  23. Protein cross-linkers: handook & selection guide (2018) G-Biosciences, USA

  24. Gaber M, Medhat W, Hany M, Saher N (2017) Protein-lipid nanohybrids as emerging platforms for drug and gene delivery: challenges and outcomes. J Control Release 254:75–91

    Article  CAS  PubMed  Google Scholar 

  25. An FF, Zhang XH (2017) Strategies for preparing albumin-based nanoparticles for multifunctional bioimaging and drug delivery. Theranostics 7:3667–3689

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Gifford JL, Hunter HN, Vogel HJ (2005) Lactoferricin: a lactoferrin-derived peptide with antimicrobial, antiviral, antitumor and immunological properties. Cell Mol Life Sci 62:2588–2598

    Article  CAS  PubMed  Google Scholar 

  27. Muhle SA, Tam JP (2001) Design of Gram-negative selective antimicrobial peptides. Biochemistry 40:5777–5785

    Article  CAS  PubMed  Google Scholar 

  28. Kandasamy SK, Larson RG (2006) Effect of salt on the interactions of antimicrobial peptides with zwitterionic lipid bilayers. Biochim Biophys Acta—Biomembr 1758:1274–1284

    Article  CAS  Google Scholar 

  29. Maupetit J, Derreumaux P, Tufféry P (2010) A fast method for large-scale de novo peptide and mini protein structure prediction. J Comput Chem 31:726–738

    CAS  PubMed  Google Scholar 

  30. Bensch KW, Raida M, Mägert H-J, Schulz-Knappe P, Forssmann W-G (1995) hBD-1: a novel β-defensin from human plasma. FEBS Lett 368:331–335

    Article  CAS  PubMed  Google Scholar 

  31. Tam JP, Lu YA, Yang JL (2008) Correlations of cationic charges with salt sensitivity and microbial specificity of cystine-stabilized β-strand antimicrobial peptides. J Biol Chem 277:50450–50456

    Article  Google Scholar 

  32. Yang L, Weiss TM, Lehrer RI, Huang HW (2000) Crystallization of antimicrobial pores in membranes: magainin and protegrin. Biophys J 79:2002–2009

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Mosca D, Hurst MA, Beverly W, Fujii C, Falla T (2000) IB-367, a protegrin peptide with in vivo and in vivo activities against the microflora associated with oral mucositis. Antimicrob Agents Chemother 44:1803–1808

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Antcheva N, Zelezetsky I, Tossi A (2006) Cationic antimicrobial peptides—the defensins. Handbook of biologically active peptides. Academic Press, Amsterdam, pp 5–67

    Google Scholar 

  35. Rodziewicz-motowidło S, Mickiewicz B, Greber K, Sikorska E (2010) Antimicrobial and conformational studies of the active and inactive analogs of the protegrin-1 peptide. FEBS J 5:1010–1022

    Article  CAS  Google Scholar 

  36. Oudhoff MJ, Kroeze KL, Nazmi K, Van Den Keijbus PAM, Van Hof W, Fernandez-Borja M, Hordijk PL, Gibbs S, Bolscher JGM, Veerman ECI (2009) Structure-activity analysis of histatin, a potent wound healing peptide from human saliva: cyclization of histatin potentiates molar activity 1000-fold. FASEB J 23:3928–3935

    Article  CAS  PubMed  Google Scholar 

  37. Xu R, Fisher M, Juliano RL (2011) Targeted albumin-based nanoparticles for delivery of amphipathic drugs. Bioconjug Chem 22:870–878

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Gu H, Ho PL, Tong E, Wang L, Xu B (2003) Presenting vancomycin on nanoparticles to enhance antimicrobial activities. Nano Lett 3:1261–1263

    Article  CAS  Google Scholar 

  39. Lee E, Shin A, Jeong KW, Jin B, Jnawali HN, Shin S, Shin SY, Kim Y (2014) Role of phenylalanine and valine10 residues in the antimicrobial activity and cytotoxicity of piscidin-1. PLoS ONE 9(12):1–30

    Google Scholar 

Download references

Acknowledgements

This work was funded by COLCIENCIAS through the Universidad Industrial de Santander under project 434-2011, and by the CINTROP research group performing the cytotoxic assays.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Y. A. Prada.

Ethics declarations

Conflict of interest

We express our consent to the publication of results declaring no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 335 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Prada, Y.A., Guzmán, F., Ortíz, C. et al. New Synthetic Peptides Conjugated to Gold Nanoclusters: Antibiotic Activity Against Escherichia coli O157:H7 and Methicillin-Resistant Staphylococcus aureus (MRSA). Protein J 38, 506–514 (2019). https://doi.org/10.1007/s10930-019-09840-9

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10930-019-09840-9

Keywords

Navigation