Skip to main content

Advertisement

Log in

The Catalytically Inactive Mutation of the Ubiquitin-Conjugating Enzyme CDC34 Affects its Stability and Cell Proliferation

  • Published:
The Protein Journal Aims and scope Submit manuscript

Abstract

The ubiquitin proteasome system (UPS) plays important roles in the regulation of protein stability, localization, and activity. A myriad of studies have focused on the functions of ubiquitin ligases E3s and deubiquitinating enzymes DUBs due to their specificity in the recognition of downstream substrates. However, the roles of the most ubiquitin-conjugating enzymes E2s are not completely understood except that they transport the activated ubiquitin and form E2–E3 protein complexes. Ubiquitin-conjugating enzyme CDC34 can promote the degradation of downstream targets through the UPS whereas its non-catalytic functions are still elusive. Here, we find that mutation of the catalytically active cysteine to serine (C93S) results in the reduced ubiquitination, increased stability, and attenuated degradation rate of CDC34. Through semi-quantitative proteomics, we identify the CDC34-interacting proteins and discover that the wild-type and mutant proteins have many differentially interacted proteins. Detailed examination finds that some of them are involved in the regulation of gene expression, cell growth, and cell proliferation. Cell proliferation assay reveals that both the wild-type and C93S proteins affect the proliferation of a cancer cell line. Database analyses show that CDC34 mRNA is highly expressed in multiple cancers, which is correlated with the reduced patient survival rate. This work may help to elucidate the enzymatic and non-enzymatic functions of this protein and might provide additional insights for drug discovery targeting E2s.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

CCK-8:

Cell counting kit-8

CDC34:

Ubiquitin-conjugating enzyme E2 R1 or cell division cycle 34

CHX:

Cycloheximide

CSNK1G2:

Casein kinase I isoform γ2

GNL3:

Guanine nucleotide-binding protein-like 3

HEK:

Human embryonic kidney

MCM7:

DNA replication licensing factor MCM7

MS:

Mass spectrometry

NC:

Negative control

PCR:

Polymerase chain reaction

PEI:

Polyethyleneimine

PSM:

Peptide spectrum match

SCF:

Skp-cullin-1-F-box

SDS–PAGE:

Sodium dodecyl sulfate–polyacrylamide gel electrophoresis

SEM:

Standard error of measurements

Ub:

Ubiquitin

UPS:

Ubiquitin proteasome system

C93S:

C93S mutant

WT:

CDC34 wild-type

References

  1. Hershko A, Ciechanover A (1992) The ubiquitin system for protein degradation. Annu Rev Biochem 61:761–807

    Article  CAS  Google Scholar 

  2. Haas AL, Rose IA (1982) The mechanism of ubiquitin activating enzyme. A kinetic and equilibrium analysis. J Biol Chem 257:10329–10337

    CAS  Google Scholar 

  3. Haas AL, Warms JV, Hershko A, Rose IA (1982) Ubiquitin-activating enzyme. Mechanism and role in protein-ubiquitin conjugation. J Biol Chem 257:2543–2548

    CAS  Google Scholar 

  4. Pickart CM (2001) Mechanisms underlying ubiquitination. Annu Rev Biochem 70:503–533

    Article  CAS  Google Scholar 

  5. Ardley HC, Robinson PA (2005) E3 ubiquitin ligases. Essays Biochem 41:15–30

    Article  CAS  Google Scholar 

  6. Stewart MD, Ritterhoff T, Klevit RE, Brzovic PS (2016) E2 enzymes: more than just middle men. Cell Res 26:423–440

    Article  CAS  Google Scholar 

  7. Ye Y, Rape M (2009) Building ubiquitin chains: E2 enzymes at work. Nat Rev Mol Cell Biol 10:755–764

    Article  CAS  Google Scholar 

  8. van Wijk SJ, Timmers HT (2010) The family of ubiquitin-conjugating enzymes (E2s): deciding between life and death of proteins. FASEB J 24:981–993

    Article  Google Scholar 

  9. Sandoval D, Hill S, Ziemba A, Lewis S, Kuhlman B, Kleiger G (2015) Ubiquitin-conjugating enzyme Cdc34 and ubiquitin ligase Skp1-cullin-F-box ligase (SCF) interact through multiple conformations. J Biol Chem 290:1106–1118

    Article  CAS  Google Scholar 

  10. Petroski MD, Deshaies RJ (2005) Mechanism of lysine 48-linked ubiquitin-chain synthesis by the cullin-RING ubiquitin-ligase complex SCF-Cdc34. Cell 123:1107–1120

    Article  CAS  Google Scholar 

  11. Kleiger G, Saha A, Lewis S, Kuhlman B, Deshaies RJ (2009) Rapid E2-E3 assembly and disassembly enable processive ubiquitylation of cullin-RING ubiquitin ligase substrates. Cell 139:957–968

    Article  CAS  Google Scholar 

  12. Suryadinata R, Holien JK, Yang G, Parker MW, Papaleo E, Sarcevic B (2013) Molecular and structural insight into lysine selection on substrate and ubiquitin lysine 48 by the ubiquitin-conjugating enzyme Cdc34. Cell Cycle 12:1732–1744

    Article  CAS  Google Scholar 

  13. Charrasse S, Carena I, Brondani V, Klempnauer KH, Ferrari S (2000) Degradation of B-Myb by ubiquitin-mediated proteolysis: involvement of the Cdc34-SCF(p45Skp2) pathway. Oncogene 19:2986–2995

    Article  CAS  Google Scholar 

  14. Gonen H, Bercovich B, Orian A, Carrano A, Takizawa C, Yamanaka K, Pagano M, Iwai K, Ciechanover A (1999) Identification of the ubiquitin carrier proteins, E2s, involved in signal-induced conjugation and subsequent degradation of IκBα. J Biol Chem 274:14823–14830

    Article  CAS  Google Scholar 

  15. Butz N, Ruetz S, Natt F, Hall J, Weiler J, Mestan J, Ducarre M, Grossenbacher R, Hauser P, Kempf D, Hofmann F (2005) The human ubiquitin-conjugating enzyme Cdc34 controls cellular proliferation through regulation of p27Kip1 protein levels. Exp Cell Res 303:482–493

    Article  CAS  Google Scholar 

  16. Kaiser P, Sia RA, Bardes EG, Lew DJ, Reed SI (1998) Cdc34 and the F-box protein Met30 are required for degradation of the Cdk-inhibitory kinase Swe1. Genes Dev 12:2587–2597

    Article  CAS  Google Scholar 

  17. Michael WM, Newport J (1998) Coupling of mitosis to the completion of S phase through Cdc34-mediated degradation of Wee1. Science 282:1886–1889

    Article  CAS  Google Scholar 

  18. Eliseeva E, Pati D, Diccinanni MB, Yu AL, Mohsin SK, Margolin JF, Plon SE (2001) Expression and localization of the CDC34 ubiquitin-conjugating enzyme in pediatric acute lymphoblastic leukemia. Cell Growth Differ 12:427–433

    CAS  Google Scholar 

  19. Chauhan D, Li G, Hideshima T, Podar K, Shringarpure R, Mitsiades C, Munshi N, Yew PR, Anderson KC (2004) Blockade of ubiquitin-conjugating enzyme CDC34 enhances anti-myeloma activity of Bortezomib/Proteasome inhibitor PS-341. Oncogene 23:3597–3602

    Article  CAS  Google Scholar 

  20. Tanaka K, Kondoh N, Shuda M, Matsubara O, Imazeki N, Ryo A, Wakatsuki T, Hada A, Goseki N, Igari T, Hatsuse K, Aihara T, Horiuchi S, Yamamoto N, Yamamoto M (2001) Enhanced expression of mRNAs of antisecretory factor-1, gp96, DAD1 and CDC34 in human hepatocellular carcinomas. Biochim Biophys Acta 1536:1–12

    Article  CAS  Google Scholar 

  21. Ceccarelli DF, Tang X, Pelletier B, Orlicky S, Xie W, Plantevin V, Neculai D, Chou YC, Ogunjimi A, Al-Hakim A, Varelas X, Koszela J, Wasney GA, Vedadi M, Dhe-Paganon S, Cox S, Xu S, Lopez-Girona A, Mercurio F, Wrana J, Durocher D, Meloche S, Webb DR, Tyers M, Sicheri F (2011) An allosteric inhibitor of the human Cdc34 ubiquitin-conjugating enzyme. Cell 145:1075–1087

    Article  CAS  Google Scholar 

  22. Arrigoni A, Bertini L, De Gioia L, Papaleo E (2014) Inhibitors of the Cdc34 acidic loop: a computational investigation integrating molecular dynamics, virtual screening and docking approaches. FEBS Open Bio 4:473–484

    Article  CAS  Google Scholar 

  23. Xu G, Jiang X, Jaffrey SR (2013) A mental retardation-linked nonsense mutation in cereblon is rescued by proteasome inhibition. J Biol Chem 288:29573–29585

    Article  CAS  Google Scholar 

  24. Hou XO, Si JM, Ren HG, Chen D, Wang HF, Ying Z, Hu QS, Gao F, Wang GH (2015) Parkin represses 6-hydroxydopamine-induced apoptosis via stabilizing scaffold protein p62 in PC12 cells. Acta Pharmacol Sin 36:1300–1307

    Article  CAS  Google Scholar 

  25. Yan JX, Wait R, Berkelman T, Harry RA, Westbrook JA, Wheeler CH, Dunn MJ (2000) A modified silver staining protocol for visualization of proteins compatible with matrix-assisted laser desorption/ionization and electrospray ionization-mass spectrometry. Electrophoresis 21:3666–3672

    Article  CAS  Google Scholar 

  26. Gharahdaghi F, Weinberg CR, Meagher DA, Imai BS, Mische SM (1999) Mass spectrometric identification of proteins from silver-stained polyacrylamide gel: a method for the removal of silver ions to enhance sensitivity. Electrophoresis 20:601–605

    Article  CAS  Google Scholar 

  27. Shevchenko A, Tomas H, Havlis J, Olsen JV, Mann M (2006) In-gel digestion for mass spectrometric characterization of proteins and proteomes. Nat Protoc 1:2856–2860

    Article  CAS  Google Scholar 

  28. Xu G, Deglincerti A, Paige JS, Jaffrey SR (2014) Profiling lysine ubiquitination by selective enrichment of ubiquitin remnant-containing peptides. Methods Mol Biol 1174:57–71

    Article  CAS  Google Scholar 

  29. Duan W, Chen S, Zhang Y, Li D, Wang R, Chen S, Li J, Qiu X, Xu G (2016) Protein C-terminal enzymatic labeling identifies novel caspase cleavages during the apoptosis of multiple myeloma cells induced by kinase inhibition. Proteomics 16:60–69

    Article  CAS  Google Scholar 

  30. The UniProt Consortium (2015) UniProt: a hub for protein information. Nucleic Acids Res 43:D204-212

    Article  Google Scholar 

  31. Elias JE, Gygi SP (2007) Target-decoy search strategy for increased confidence in large-scale protein identifications by mass spectrometry. Nat Methods 4:207–214

    Article  CAS  Google Scholar 

  32. Liu H, Sadygov RG, Yates JR 3rd (2004) A model for random sampling and estimation of relative protein abundance in shotgun proteomics. Anal Chem 76:4193–4201

    Article  CAS  Google Scholar 

  33. de Bie P, Ciechanover A (2011) Ubiquitination of E3 ligases: self-regulation of the ubiquitin system via proteolytic and non-proteolytic mechanisms. Cell Death Differ 18:1393–1402

    Article  Google Scholar 

  34. Block K, Boyer TG, Yew PR (2001) Phosphorylation of the human ubiquitin-conjugating enzyme, CDC34, by casein kinase 2. J Biol Chem 276:41049–41058

    Article  CAS  Google Scholar 

  35. Wu K, Chong RA, Yu Q, Bai J, Spratt DE, Ching K, Lee C, Miao H, Tappin I, Hurwitz J, Zheng N, Shaw GS, Sun Y, Felsenfeld DP, Sanchez R, Zheng JN, Pan ZQ (2016) Suramin inhibits cullin-RING E3 ubiquitin ligases. Proc Natl Acad Sci USA 113:E2011-2018

    Google Scholar 

  36. Gnjatic S, Cao Y, Reichelt U, Yekebas EF, Nolker C, Marx AH, Erbersdobler A, Nishikawa H, Hildebrandt Y, Bartels K, Horn C, Stahl T, Gout I, Filonenko V, Ling KL, Cerundolo V, Luetkens T, Ritter G, Friedrichs K, Leuwer R, Hegewisch-Becker S, Izbicki JR, Bokemeyer C, Old LJ, Atanackovic D (2010) NY-CO-58/KIF2C is overexpressed in a variety of solid tumors and induces frequent T cell responses in patients with colorectal cancer. Int J Cancer 127:381–393

    CAS  Google Scholar 

  37. Li Y, Lu W, Chen D, Boohaker RJ, Zhai L, Padmalayam I, Wennerberg K, Xu B, Zhang W (2015) KIFC1 is a novel potential therapeutic target for breast cancer. Cancer Biol Ther 16:1316–1322

    Article  CAS  Google Scholar 

  38. Rhodes DR, Kalyana-Sundaram S, Mahavisno V, Varambally R, Yu J, Briggs BB, Barrette TR, Anstet MJ, Kincead-Beal C, Kulkarni P, Varambally S, Ghosh D, Chinnaiyan AM (2007) Oncomine 3.0: genes, pathways, and networks in a collection of 18,000 cancer gene expression profiles. Neoplasia 9:166–180

    Article  CAS  Google Scholar 

  39. Szasz AM, Lanczky A, Nagy A, Forster S, Hark K, Green JE, Boussioutas A, Busuttil R, Szabo A, Gyorffy B (2016) Cross-validation of survival associated biomarkers in gastric cancer using transcriptomic data of 1065 patients. Oncotarget 7:49322–49333

    Article  Google Scholar 

  40. Hornbeck PV, Zhang B, Murray B, Kornhauser JM, Latham V, Skrzypek E (2015) PhosphoSitePlus, 2014: mutations, PTMs and recalibrations. Nucleic Acids Res 43:D512-520

    Article  Google Scholar 

  41. Scaglione KM, Bansal PK, Deffenbaugh AE, Kiss A, Moore JM, Korolev S, Cocklin R, Goebl M, Kitagawa K, Skowyra D (2007) SCF E3-mediated autoubiquitination negatively regulates activity of Cdc34 E2 but plays a nonessential role in the catalytic cycle in vitro and in vivo. Mol Cell Biol 27:5860–5870

    Article  CAS  Google Scholar 

  42. Scortegagna M, Subtil T, Qi J, Kim H, Zhao W, Gu W, Kluger H, Ronai ZA (2011) USP13 enzyme regulates Siah2 ligase stability and activity via noncatalytic ubiquitin-binding domains. J Biol Chem 286:27333–27341

    Article  CAS  Google Scholar 

  43. Skaug B, Chen J, Du F, He J, Ma A, Chen ZJ (2011) Direct, noncatalytic mechanism of IKK inhibition by A20. Mol Cell 44:559–571

    Article  CAS  Google Scholar 

  44. Lei M (2005) The MCM complex: its role in DNA replication and implications for cancer therapy. Curr Cancer Drug Targets 5:365–380

    Article  CAS  Google Scholar 

  45. Kang W, Tong JH, Chan AW, Cheng AS, Yu J, To K (2014) MCM7 serves as a prognostic marker in diffuse-type gastric adenocarcinoma and siRNA-mediated knockdown suppresses its oncogenic function. Oncol Rep 31:2071–2078

    Article  CAS  Google Scholar 

  46. Chen J, Dong S, Hu J, Duan B, Yao J, Zhang R, Zhou H, Sheng H, Gao H, Li S, Zhang X (2015) Guanine nucleotide binding protein-like 3 is a potential prognosis indicator of gastric cancer. Int J Clin Exp Pathol 8:13273–13278

    CAS  Google Scholar 

Download references

Acknowledgements

We thank Yarong Wang at the Mass Spectrometry core facility of the Medical School of Soochow University for the assistance during the MS analysis. We also appreciate Dr. Xiaoyan Qiu at Soochow University for her critical reading of the manuscript. This work was supported by the National Natural Science Foundation of China (31670833 & 31700722), Postgraduate Research and Practice Innovation Program of Jiangsu Province (KYCX17_2040), Jiangsu Key Laboratory of Neuropsychiatric Diseases (BM2013003), a project funded by the Priority Academic Program Development (PAPD) of Jiangsu Higher Education Institutions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guoqiang Xu.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Human Participants and Animals

This article does not contain any studies with human participants or animals performed by any of the authors

Electronic Supplementary Material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 2541 KB)

Supplementary material 2 (XLSX 46 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, X., Zhang, Y., Hu, Z. et al. The Catalytically Inactive Mutation of the Ubiquitin-Conjugating Enzyme CDC34 Affects its Stability and Cell Proliferation. Protein J 37, 132–143 (2018). https://doi.org/10.1007/s10930-018-9766-x

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10930-018-9766-x

Keywords

Navigation