Skip to main content
Log in

Determining the Roles of a Conserved α-Helix in a Global Virulence Regulator from Staphylococcus aureus

  • Published:
The Protein Journal Aims and scope Submit manuscript

Abstract

SarA, a pleiotropic transcription regulator, is encoded by Staphylococcus aureus, a pathogenic bacterium. The expression of many virulence and non-virulence genes in S. aureus is modulated by this regulator. Structural studies have shown it to be a winged-helix DNA-binding protein carrying two monomers. Each SarA monomer is composed of five α-helices (α1–α5), three β-strands (β1–β3) and multiple loops. The putative DNA binding region of SarA is constituted with α3, α4, β2, and β3, whereas, its dimerization seems to occur using α1, α2, and α5. Interestingly, many SarA-like proteins are dimeric and use three or more helices for their dimerization. To clearly understand the roles of helix α1 in the dimerization, we have constructed and purified a SarA mutant (Δα1) that lacks helix α1. Our in-depth studies with Δα1 indicate that the helix α1 is critical for preserving the structure, DNA binding activity and thermodynamic stability of SarA. However, the helix has little affected its dimerization ability. Possible reasons for such anomaly have been discussed at length.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Abbreviations

rSarA:

Recombinant SarA

Δα1:

rSarA lacking helix α1

PCR:

Polymerase chain reaction

IPTG:

Isopropyl-β-D-1-thiogalactopyranoside

PMSF:

Phenylmethane sulfonylfluoride

SDS-PAGE:

Sodium dodecyl sulphate polyacrylamide gel electrophoresis

CD:

Circular dichroism

hla:

Promoter region of S. aureus α-toxin-encoding gene

Ni-NTA:

Nickel nitrilotriacetic acid

References

  1. Otto M (2010) Basis of virulence in community-associated methicillin-resistant Staphylococcus aureus. Annu Rev Microbiol 64:143–162

    Article  CAS  Google Scholar 

  2. Plata K, Rosato AE, Wegrzyn G (2009) Staphylococcus aureus as an infectious agent: overview of biochemistry and molecular genetics of its pathogenicity. Acta Biochim Pol 56:597–612

    CAS  Google Scholar 

  3. Cue D, Lei MG, Lee CY (2012) Genetic regulation of the intercellular adhesion locus in staphylococci. Front Cell Infect Microbiol 2:38

    Article  Google Scholar 

  4. Arya R, Princy SA (2013) An insight into pleiotropic regulators Agr and Sar: molecular probes paving the new way for antivirulent therapy. Future Microbiol 8:1339–1353

    Article  CAS  Google Scholar 

  5. Cheung AL, Bayer AS, Zhang G, Gresham H, Xiong YQ (2004) Regulation of virulence determinants in vitro and in vivo in Staphylococcus aureus. FEMS Immunol Med Microbiol 40:1–9

    Article  CAS  Google Scholar 

  6. Bronner S, Monteil H, Prévost G (2004) Regulation of virulence determinants in Staphylococcus aureus: complexity and applications. FEMS Microbiol Rev 28:183–200

    Article  CAS  Google Scholar 

  7. Dunman PM, Murphy E, Haney S, Palacios D, Tucker-Kellogg G, WU S, Brown EL, Zagusky RJ, Shlaes D, Projan SJ (2001) Transcription profiling-based identification of Staphylococcus aureus genes regulated by the agr and/or sarA loci. J Bacteriol 183:7341–7353

    Article  CAS  Google Scholar 

  8. Morrison JM, Anderson KL, Beenken KE, Smeltzer MS, Dunman PM (2012) The staphylococcal accessory regulator, SarA, is an RNA-binding protein that modulates the mRNA turnover properties of late-exponential and stationary phase Staphylococcus aureus cells. Front Cell Infect Microbiol 2:26

    Article  Google Scholar 

  9. Didier JP, Cozzone AJ, Duclos B (2010) Phosphorylation of the virulence regulator SarA modulates its ability to bind DNA in Staphylococcus aureus. FEMS Microbiol Lett 306: 30–36

    Article  CAS  Google Scholar 

  10. Sun F, Ding Y, Ji Q, Liang Z, Deng X, Wong CC, Yi C, Zhang L, Xie S, Alvarez S, Hicks LM, Luo C, Jiang H, Lan L, He C (2012) Protein cysteine phosphorylation of SarA/MgrA family transcriptional regulators mediates bacterial virulence and antibiotic resistance. Proc Natl Acad Sci USA 109:15461–15466

    Article  CAS  Google Scholar 

  11. Rechtin TM, Gillaspy AF, Schumacher MA, Brennan RG, Smeltzer MS, Hurlburt BK (1999) Characterization of the SarA virulence gene regulator of Staphylococcus aureus. Mol Microbiol 33:307–316

    Article  CAS  Google Scholar 

  12. Mahapa A, Mandal S, Biswas A, Jana B, Polley S, Sau S, Sau K (2015) Chemical and thermal unfolding of a global staphylococcal virulence regulator with a flexible C-terminal end. PLoS ONE 10:e0122168

    Article  Google Scholar 

  13. Liu Y, Manna AC, Pan CH, Kriksunov IA, Thiel DJ, Cheung AL, Zhang G (2006) Structural and function analyses of the global regulatory protein SarA from Staphylococcus aureus. Proc Natl Acad Sci USA 103:2392–2397

    Article  CAS  Google Scholar 

  14. Cheung AL, Nishina KA, Trotonda MP, Tamber S (2008) The SarA protein family of Staphylococcus aureus. Int J Biochem Cell Biol 40: 355–361

    Article  CAS  Google Scholar 

  15. Chen PR, Bae T, Williams WA, Duguid EM, Rice PA, Schneewind O, He C (2006) An oxidation-sensing mechanism is used by the global regulator MgrA in Staphylococcus aureus. Nat Chem Biol 2:591–595

    Article  CAS  Google Scholar 

  16. Liu Y, Manna AC, Li R, Martin WE, Murphy RC, Cheung AL, Zhang G (2001) Crystal structure of the SarR protein from Staphylococcus aureus. Proc Natl Acad Sci USA 98:6877–6882

    Article  CAS  Google Scholar 

  17. Poor CB, Chen PR, Duguid E, Rice PA, He C (2009) Crystal structures of the reduced, sulfenic acid, and mixed disulfide forms of SarZ, a redox active global regulator in Staphylococcus aureus. J Biol Chem 284:23517–23524

    Article  CAS  Google Scholar 

  18. Zhu Y, Fan X, Zhang X, Jiang X, Niu L, Teng M, Li X (2014) Structure of rot, a global regulator of virulence genes in Staphylococcus aureus. Acta Crystallogr D Biol Crystallogr 70:2467–2476

    Article  CAS  Google Scholar 

  19. Gordon CP, Williams P, Chan WC (2013) Attenuating Staphylococcus aureus virulence gene regulation: a medicinal chemistry perspective. J Med Chem 56:1389–1404

    Article  CAS  Google Scholar 

  20. Killikelly A, Benson MA, Ohneck EA, Sampson JM, Jakoncic J, Spurrier B, Torres VJ, Kong XP (2015) Structure-based functional characterization of repressor of toxin (Rot), a central regulator of Staphylococcus aureus virulence. J Bacteriol 197:188–200

    Article  Google Scholar 

  21. Sun F, Zhou L, Zhao B-C, Deng X, Cho H, Yi C, Jian X, Song CX, Luan CH, Bae T, Li Z, He C (2011) Targeting MgrA-mediated virulence regulation in Staphylococcus aureus. Chem Biol 18:1032–1041

    Article  CAS  Google Scholar 

  22. Arya R, Ravikumar R, Santhosh RS, Princy SA. SarA (2015) based novel therapeutic candidate against Staphylococcus aureus associated with vascular graft infections. Front Microbiol 6:416

    Article  Google Scholar 

  23. Cardinale D, Salo-Ahen OM, Ferrari S, Ponterini G, Cruciani G, Carosati E, Tochowicz AM, Mangani S, Wade RC, Costi MP (2010) Homodimeric enzymes as drug targets. Curr Med Chem 17: 826–846

    Article  CAS  Google Scholar 

  24. Tapas S, Kumar A, Dhindwal S, Kumar P (2011) Structural analysis of chorismate synthase from Plasmodium falciparum: a novel target for antimalaria drug discovery. Int J Biol Macromol 49: 767–777

    Article  CAS  Google Scholar 

  25. Zühlsdorf M, Werten S, Klupp BG, Palm GJ, Mettenleiter TC, Hinrichs W (2015) Dimerization-induced allosteric changes of the oxyanion-hole loop activate the Pseudorabies Virus assemblin pUL26N, a herpesvirus serine protease. PLoS Pathog 11:e1005045

    Article  Google Scholar 

  26. Trzeciecka A, Klossowski S, Bajor M, Zagozdzon R, Gaj P, Muchowicz A, Malinowska A, Czerwoniec A, Barankiewicz J, Domagala A, Chlebowska J, Prochorec-Sobieszek M, Winiarska M, Ostaszewski R, Gwizdalska I, Golab J, Nowis D, Firczuk M (2016) Dimeric peroxiredoxins are druggable targets in human Burkitt lymphoma. Oncotarget 7:1717–1731

    Article  Google Scholar 

  27. Vashist A, Prithvi Raj D, Gupta UD, Bhat R, Tyagi JS (2016) Importance of the α10 helix for DevR activation: a road map for screening inhibitors against DevR-mediated dormancy of Mycobacterium tuberculosis. Int J Mycobacteriol 5(1):S92–S93

    Google Scholar 

  28. Sambrook J, Russell DW (2001) Molecular cloning: a laboratory manual, 3rd edn. Cold Spring Harbor Laboratory Press, Cold Spring Harbor

    Google Scholar 

  29. Ausubel FM, Brent R, Kingston RE, Moore DD, Seidman JG, Smith JA, Struhl K (1998) Current protocols in molecular biology, Ch. 12, Massachusetts General Hospital. Harvard Medical School, Wiley, NewYork

    Google Scholar 

  30. Creighton TE (1997) Protein structure: a practical approach, 2nd edn. IRL Press at Oxford University Press, New York

    Google Scholar 

  31. Bohm G, Muhr R, Jaenicke R (1992) Quantitative analysis of protein far UV circular dichroism spectra by neural networks. Protein Eng 5:191–195

    Article  CAS  Google Scholar 

  32. Pace CN, Shaw KL (2000) Linear extrapolation method of analyzing solvent denaturation curves. Proteins 41:1–7

    Article  Google Scholar 

  33. Sancho J (2013) The stability of 2-state, 3-state and more-state proteins from simple spectroscopic techniques…plus the structure of the equilibrium intermediates at the same time. Arch Biochem Biophys 531:4–13

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank Mr. J. Guin, Mr. A. Banerjee, Mr. M. Das and Mr. J. Chatterjee for their excellent technical support. Mr. A. Mahapa and Mr. S. Mandal are the recipients of Senior Research Fellowship from the Council of Scientific and Industrial Research (Government of India, New Delhi). The work was supported by the grants from CSIR and BRNS/DAE (Government of India, Mumbai) to KS and SS, respectively.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Subrata Sau or Keya Sau.

Ethics declarations

Conflict of interest

The authors declare no competing financial interest.

Ethical Approval

The present studies have not been performed with any human or animal.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mahapa, A., Mandal, S., Sinha, D. et al. Determining the Roles of a Conserved α-Helix in a Global Virulence Regulator from Staphylococcus aureus. Protein J 37, 103–112 (2018). https://doi.org/10.1007/s10930-018-9762-1

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10930-018-9762-1

Keywords

Navigation