Skip to main content
Log in

Induction of Metallothionein in Rat Liver by Zinc Exposure: A Dose and Time Dependent Study

  • Published:
The Protein Journal Aims and scope Submit manuscript

Abstract

Metallothioneins (MTs) are low molecular weight ubiquitous metalloproteins with high cysteine (thiol) content. The intracellular concentration of zinc (Zn) is tightly regulated and MT plays a crucial role in it. The present study investigates the relationship between the Zn status (as a function of Zn concentration and time) in the rat liver and the occurrence of hepatic MT. For dose dependent study, four experimental groups, one control and three receiving different levels of metal supplementation, were chosen [Group 1 control and Group 2, Group 3, Group 4 receiving subcutaneous dose of 10, 50 and 100 mg of Zn/kg body weight (in the form of ZnSO4·7H2O), respectively]. For the time dependent expression of MT, again four experimental groups, i.e. Group 5 control and Group 6, Group 7, Group 8 receiving 50 mg of Zn/kg body weight (in the form of ZnSO4·7H2O) subcutaneously and sacrificed at different time intervals after last injection i.e. 6, 18, 48 h, respectively were chosen. Isolation of MT was done by using combination of gel filtration and ion exchange chromatography while characterization of MT fraction was carried in the wavelength range 200–400 nm. Expression of MT was studied by using Western blot analysis. The results revealed that the MT expression increases with increasing the dose of Zn administered and maximum at 18 h after last Zn injection. Accumulation of MT with increase dose would help in maintaining the intracellular Zn concentration by its sequestration which further reduces the possibility of undesirable binding of Zn to other proteins significantly and maintains Zn homeostasis. The maximum expression of MT at 18 h is indicative of its half life.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

MT:

Metallothionein

LD:

Lethal dose

MTF-1:

Metal transcription factor-1

MRE:

Metal responsive element

DEAE:

Diethylaminoethyl

BSA:

Bovine serum albumin

MWCO:

Molecular weight cut-off

A280 :

Absorbance at 280 nm

A205 :

Absorbance at 205 nm

ESI-MS:

Electrospray ionization mass spectrometry

LMCT:

Ligand to metal charge transfer

References

  1. Vasak M, Hasler DW (2000) Metallothioneins: new functional and structural insights. Curr Opin Chem Biol 4:177–183

    Article  CAS  Google Scholar 

  2. Maret W, Li Y (2009) Coordination dynamics of zinc in proteins. Chem Rev 109:4682–4707

    Article  CAS  Google Scholar 

  3. Barceloux DG (1999) Zinc. Clin Toxicol 37:279–292

    CAS  Google Scholar 

  4. Mocchegiani E, Muzzioli M, Giacconi R (2000) Zinc and immunoresistance to infections in ageing: new biological tools. Trends Pharmacol Sci 21:205–208

    Article  CAS  Google Scholar 

  5. Beyersmann D (2002) Homeostasis and cellular functions of zinc. Mat Wiss U Werkstofftech 33:764–769

    Article  CAS  Google Scholar 

  6. Chasapis CT, Loutsidou AC, Spiliopoulou CA, Stefanidou ME (2012) Zinc and human health: an update. Arch Toxicol 86:521–534

    Article  CAS  Google Scholar 

  7. Truong-Tran AQ, Carter J, Ruffin RE, Zalewski PD (2001) The role of zinc in caspase activation and apoptotic cell death. Biometals 14:315–330

    Article  CAS  Google Scholar 

  8. Clegg MS, Hanna LA, Niles BJ, Momma TY, Keen CL (2005) Zinc deficiency-induced cell death. IUBMB Life 57:661–669

    Article  CAS  Google Scholar 

  9. Fraker PJ (2005) Roles for cell death in zinc deficiency. J Nutr 135:359–362

    CAS  Google Scholar 

  10. Wong SH, Zhao Y, Schoene NW, Han CT, Shih RS, Lei KY (2007) Zinc deficiency depresses p21 gene expression: inhibition of cell cycle progression is independent of the decrease in p21 protein level in HepG2 cells. Am J Physiol Cell Physiol 292:C2175–C2184

    Article  CAS  Google Scholar 

  11. Corniola RS, Tassabehji NM, Hare J, Sharma G, Levenson CW (2008) Zinc deficiency impairs neuronal precursor cell proliferation and induces apoptosis via p53-mediated mechanisms. Brain Res 1237:52–61

    Article  CAS  Google Scholar 

  12. Stamoulis I, Kouraklis G, Theocharis S (2007) Zinc and the liver: an active interaction. Dig Dis Sci 52:1595–1612

    Article  CAS  Google Scholar 

  13. Maret W (2011) Metals on the move: zinc ions in cellular regulation and in the coordination dynamics of zinc proteins. Biometals 24:411–418

    Article  CAS  Google Scholar 

  14. Domingo JL, Llobet JM, Paternain JL, Corbella J (1988) Acute zinc intoxication: comparison of the antidotal efficacy of several chelating agents. Vet Hum Toxicol 30:224–228

    CAS  Google Scholar 

  15. Karlsson N, Fangmark I, Haggqvist I, Karlsson B, Rittfeldt L, Marchner H (1991) Mutagenicity testing of condensates of smoke from titanium dioxide/hexachloroethane and zinc/hexachloroethane pyrotechnic mixtures. Mutat Res 260:39–46

    Article  CAS  Google Scholar 

  16. Maret W, Sandstead HH (2006) Zinc requirements and the risks and benefits of zinc supplementation. J Trace Elem Med Biol 20:3–18

    Article  CAS  Google Scholar 

  17. Vallee BL (1995) The function of metallothionein. Neurochem Int 27:23–33

    Article  CAS  Google Scholar 

  18. Andrews GK (2001) Cellular zinc sensors: MTF-1 regulation of gene expression. Biometals 14:223–237

    Article  CAS  Google Scholar 

  19. Lichtlen P, Schaffner W (2001) Putting its fingers on stressful situations: the heavy metal-regulatory transcription factor MTF-1. Bioessays 23:1010–1017

    Article  CAS  Google Scholar 

  20. Palmiter RD (2004) Protection against zinc toxicity by metallothionein and zinc transporter 1. Proc Natl Acad Sci USA 101:4918–4923

    Article  CAS  Google Scholar 

  21. Eide DJ (2004) The SLC39 family of metal ion transporters. Pflugers Arch 447:796–800

    Article  CAS  Google Scholar 

  22. Palmiter RD, Huang L (2004) Efflux and compartmentalization of zinc by members of the SLC30 family of solute carriers. Pflugers Arch 447:744–751

    Article  CAS  Google Scholar 

  23. Colvin RA, Holmes WR, Fontaine CP, Maret W (2010) Cytosolic zinc buffering and muffling: their role in intracellular zinc homeostasis. Metallomics 2:306–317

    Article  CAS  Google Scholar 

  24. Haq F, Mahoney M, Koropatnick J (2003) Signaling events for metallothionein induction. Mutat Res 533:211–226

    Article  CAS  Google Scholar 

  25. Krezel A, Maret W (2007) Different redox states of metallothionein/thionein in biological tissue. Biochem J 402:551–558

    Article  CAS  Google Scholar 

  26. Maret W, Vallee BL (1998) Thiolate ligands in metallothionein confer redox activity on zinc clusters. Proc Natl Acad Sci USA 95:3478–3482

    Article  CAS  Google Scholar 

  27. Bremner I, Davies NT (1975) The induction of metallothionein in rat liver by zinc injection and restriction of food intake. Biochem J 149:733–738

    Article  CAS  Google Scholar 

  28. Bell SG, Vallee BL (2009) The metallothionein/thionein system: an oxidoreductive metabolic zinc link. Chembiochem 5:55–62

    Article  Google Scholar 

  29. Garla R, Mohanty BP, Ganger R, Sudarshan M, Bansal MP, Garg ML (2013) Metal stoichiometry of isolated and arsenic substituted metallothionein: PIXE and ESI-MS study. Biometals 26:887–896

    Article  CAS  Google Scholar 

  30. Laemmli UK (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227:680–685

    Article  CAS  Google Scholar 

  31. Merril CR, Dunau ML, Goldman D (1981) A rapid sensitive silver stain for polypeptides in polyacrylamide gels. Anal Biochem 110:201–207

    Article  CAS  Google Scholar 

  32. Ganger R, Garla R, Mohanty BP, Bansal MP, Garg ML (2016) Protective effects of zinc against acute arsenic toxicity by regulating antioxidant defense system and cumulative metallothionein expression. Biol Trace Elem Res 169:218–229

    Article  CAS  Google Scholar 

  33. Suzuki JS, Kodama N, Molotkov A, Aoki E, Tohyama C (1998) Isolation and identification of metallothionein isoforms (MT-1 and MT-2) in the rat testis. Biochem J 334:695–701

    Article  CAS  Google Scholar 

  34. Krizkova S, Adam V, Eckschlager T, Kizek R (2009) Using of chicken antibodies for metallothionein detection in human blood serum and cadmium-treated tumour cell lines after dot-and electroblotting. Electrophoresis 30:3726–3735

    Article  CAS  Google Scholar 

  35. Romero-Isart N, Vasak M (2002) Advances in the structure and chemistry of metallothioneins. J Inorg Biochem 88:388–396

    Article  CAS  Google Scholar 

  36. Capdevila M, Bofill R, Palacios O, Atrian S (2012) State-of-the-art of metallothioneins at the beginning of the 21st century. Coord Chem Rev 256:46–62

    Article  CAS  Google Scholar 

  37. Toyama M, Yamashita M, Hirayama N, Muroka Y (2002) Interactions of arsenic with human metallothionein-2. Biochemistry 132:217–221

    Article  CAS  Google Scholar 

  38. Presta A, Green AR, Zelazowski A,Stillman MJ (1995) Copper binding to rabbit liver metallothionein: formation of a continuum of copper(1)-thiolate stoichiometric species. Eur J Biochem 227:226–240

    Article  CAS  Google Scholar 

  39. Ngu TT, Stillman MJ (2009) Metal-binding mechanisms in metallothioneins. Dalton Trans 28:5425–5433

    Article  Google Scholar 

  40. Ngu TT, Stillman MJ (2009) Metalation of metallothioneins. IUBMB Life 61:438–446

    Article  CAS  Google Scholar 

  41. Ngu TT, Lee JA, Rushton MK, Stillman MJ (2009) Arsenic metalation of seaweed Fucus vesiculosus metallothionein: the importance of the interdomain linker in metallothionein. Biochemistry 48:8806–8816

    Article  CAS  Google Scholar 

  42. Wilhelmsen TW, Olsvik PA, Hansen BH, Andersen RA (2002) Metallothioneins from horse kidney studied by separation with capillary zone electrophoresis below and above the isoelectric points. Talanta 57:707–720

    Article  CAS  Google Scholar 

  43. Feng W, Benz FW, Cai J, Pierce WM, Kang YJ (2006) Metallothionein disulfides are present in metallothionein-overexpressing transgenic mouse heart and increase under conditions of oxidative stress. J Biol Chem 281:681–687

    Article  CAS  Google Scholar 

  44. Kazuo TS, Tamio M (1983) Comparison of properties of two isometallothioneins in oxidation and metal substitution reactions. Chem Pharm Bull 31:4469–4475

    Article  Google Scholar 

  45. Liu J, Zhou ZX, Zhang W, Bell MW, Waalkes MP (2009) Changes in hepatic gene expression in response to hepatoprotective levels of zinc. Liver Int 29:1222–1229

    Article  CAS  Google Scholar 

  46. Albores A, Koropatnick J, Cherian MG, Zelazowski AJ (1992) Arsenic induces and enhances rat hepatic metallothionein production in vivo. Chem Biol Interact 85:127–140

    Article  CAS  Google Scholar 

  47. Zhao Y, Toselli P, Li W (2012) Microtubules as a critical target for arsenic toxicity in lung cells in vitro and in vivo. Int J Environ Res Public Health 9:474–495

    Article  CAS  Google Scholar 

  48. Zhang D, Liu J, Gao J, Shahzad M, Han Z, Wang Z, Li J, Sjölinder H (2014) Zinc supplementation protects against cadmium accumulation and cytotoxicity in Madin-Darby bovine kidney cells. PLoS ONE 9:e103427

    Article  Google Scholar 

  49. Lehman-McKeeman LD, Andrews GK, Klaassen CD (1988) Mechanisms of regulation of rat hepatic metallothionein-I and metallothionein-II levels following administration of zinc. Toxicol Appl Pharmacol 92:1–9

    Article  CAS  Google Scholar 

  50. Maret W (2009) Molecular aspects of human cellular zinc homeostasis: redox control of zinc potentials and zinc signals. Biometals 22:149–157

    Article  CAS  Google Scholar 

  51. Laity JH, Andrews GK (2007) Understanding the mechanism of zinc-sensing by metal-response element binding transcription factor-1 (MTF-1). Arch Biochem Biophys 463:201–210

    Article  CAS  Google Scholar 

  52. Peixoto NC, Serafim MA, Flores EM, Bebianno MJ, Pereira ME (2007) Metallothionein, zinc, and mercury levels in tissues of young rats exposed to zinc and subsequently to mercury. Life Sci 81:1264–1271

    Article  CAS  Google Scholar 

  53. Oliveira VA, Oliveira CS, Mesquita M, Pedroso TF, Costa LM, Fiuza Tda L, Pereira ME (2015) Zinc and N-acetylcysteine modify mercury distribution and promote increase in hepatic metallothionein levels. J Trace Elem Med Biol 32:183–188

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors are grateful to Dr. M. P. Bansal and Dr. B. P. Mohanty for sharing their immense knowledge with us. Dr. Renuka Ganger is gratefully acknowledged for the support rendered during western blot analysis. This work is funded by University Grants Commission (UGC) [Grant No: F. No. 37-317/2009 (SR)], New Delhi, India, and UGC Department of Atomic Energy (UGC-DAE) Consortium for Scientific Research (Grant No: UGC-DAE-CSR-KC/CRS/13/TE-05/0842), Kolkatta, India. Roobee Garla is thankful to UGC, New Delhi, for providing financial assistance in the form of Junior/Senior Research Fellowship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Roobee Garla.

Ethics declarations

Conflict of interest

The authors declare that they have no conflicts of interest.

Ethical Approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Garla, R., Kango, P., Gill, N.K. et al. Induction of Metallothionein in Rat Liver by Zinc Exposure: A Dose and Time Dependent Study. Protein J 36, 433–442 (2017). https://doi.org/10.1007/s10930-017-9737-7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10930-017-9737-7

Keywords

Navigation