Skip to main content

Advertisement

Log in

Sub-Micellar Concentration of Sodium Dodecyl Sulphate Prevents Thermal Denaturation Induced Aggregation of Plant Lectin, Jacalin

  • Published:
The Protein Journal Aims and scope Submit manuscript

Abstract

The irreversible thermal unfolding of jacalin, the lectin purified from jackfruit seeds was accompanied by aggregation, where intermolecular interactions among the subunits are favoured over intramolecular interactions. The extent of aggregation increased as a function of temperature, time and protein concentration. The anionic surfactant, sodium dodecyl sulphate (SDS) significantly suppressed the formation of aggregates as observed by turbidity measurements and Rayleigh scattering assay. Moreover, far UV-CD spectra indicate that the protein β sheet transforms into α helical structure, when denatured in the presence of 3 mM SDS. Further, jacalin when heated in the presence of SDS partially retained the hemagglutination activity when jacalin-SDS mixture was diluted to 1:8 factor since 3 mM SDS was found to lyse the red blood cells. Thus, SDS only altered the aggregation behaviour of jacalin by preventing intermolecular hydrogen bonding among the exposed residues but did not completely stabilize the native conformation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Abbreviations

SDS:

Sodium dodecyl sulphate

CMC:

Critical micellar concentration

CD:

Circular dichroism

RBCs:

Red blood cells

References

  1. Markossian KA, Kurganov BI (2004) Protein folding, misfolding, and aggregation. Formation of inclusion bodies and aggresomes. BioChemistry 69(9):971–984

    CAS  Google Scholar 

  2. Kopito RR (2000) Aggresomes, inclusion bodies and protein aggregation. Trends Cell Biol 10(12):524–530

    Article  CAS  Google Scholar 

  3. Morel B, Casares S, Conejero-Lara F (2006) A single mutation induces amyloid aggregation in the alpha-spectrin SH3 domain: analysis of the early stages of fibril formation. J Mol Biol 356(2):453–468

    Article  CAS  Google Scholar 

  4. Calamai M, Chiti F, Dobson CM (2005) Amyloid fibril formation can proceed from different conformations of a partially unfolded protein. Biophys J 89(6):4201–4210

    Article  CAS  Google Scholar 

  5. Uversky VN, Fink AL (2004) Conformational constraints for amyloid fibrillation: the importance of being unfolded. Biochim Biophys Acta 6(2):131–153

    Article  Google Scholar 

  6. Vetri V, Canale C, Relini A, Librizzi F, Militello V, Gliozzi A, Leone M (2007) Amyloid fibrils formation and amorphous aggregation in concanavalin A. Biophys Chem 125(1):184–190

    Article  CAS  Google Scholar 

  7. Kelly JW (1998) The alternative conformations of amyloidogenic proteins and their multi-step assembly pathways. Curr Opin Struct Biol 8(1):101–106

    Article  CAS  Google Scholar 

  8. Dobson CM (2001) The structural basis of protein folding and its links with human disease. Philos Trans R Soc Lond B Biol Sci 356(1406):133–145

    Article  CAS  Google Scholar 

  9. Chiti F, Dobson CM (2006) Protein misfolding, functional amyloid, and human disease. Annu Rev Biochem 75:333–366

    Article  CAS  Google Scholar 

  10. Anfinsen CB (1973) Principles that govern the folding of protein chains. Science 181(4096):223–230

    Article  CAS  Google Scholar 

  11. Kreimer DI, Shnyrov VL, Villar E, Silman I, Weiner L (1995) Irreversible thermal denaturation of Torpedo californica acetylcholinesterase. Protein Sci 4(11):2349–2357

    Article  CAS  Google Scholar 

  12. Vaiana SM, Manno M, Emanuele A, Palma-Vittorelli MB, Palma MU (2001) The Role of solvent in protein folding and in aggregation. J Biol Phys 27(2):133–145. doi:10.1023/a:1013146530021

    Article  CAS  Google Scholar 

  13. Munishkina LA, Henriques J, Uversky VN, Fink AL (2004) Role of protein–water interactions and electrostatics in α-synuclein fibril formation. BioChemistry 43(11):3289–3300. doi:10.1021/bi034938r

    Article  CAS  Google Scholar 

  14. Li R, Wu Z, Wangb Y, Ding L, Wang Y (2016) Role of pH-induced structural change in protein aggregation in foam fractionation of bovine serum albumin. Biotechnol Rep 9:46–52. doi:10.1016/j.btre.2016.01.002

    Article  Google Scholar 

  15. Hamada H, Arakawa T, Shiraki K (2009) Effect of additives on protein aggregation. Curr Pharm Biotechnol 10(4):400–407

    Article  CAS  Google Scholar 

  16. Militello V, Vetri V, Leone M (2003) Conformational changes involved in thermal aggregation processes of bovine serum albumin. Biophys Chem 105(1):133–141

    Article  CAS  Google Scholar 

  17. Weiss WFt, Young TM, Roberts CJ (2009) Principles, approaches, and challenges for predicting protein aggregation rates and shelf life. J Pharm Sci 98(4):1246–1277

    Article  CAS  Google Scholar 

  18. Dong A, Prestrelski SJ, Allison SD, Carpenter JF (1995) Infrared spectroscopic studies of lyophilization- and temperature-induced protein aggregation. J Pharm Sci 84(4):415–424

    Article  CAS  Google Scholar 

  19. Costantino HR, Schwendeman SP, Griebenow K, Klibanov AM, Langer R (1996) The secondary structure and aggregation of lyophilized tetanus toxoid. J Pharm Sci 85(12):1290–1293

    Article  CAS  Google Scholar 

  20. Chan HK, Ongpipattanakul B, Au-Yeung J (1996) Aggregation of rhDNase occurred during the compression of KBr pellets used for FTIR spectroscopy. Pharm Res 13(2):238–242

    Article  CAS  Google Scholar 

  21. Prestrelski SJ, Pikal KA, Arakawa T (1995) Optimization of lyophilization conditions for recombinant human interleukin-2 by dried-state conformational analysis using Fourier-transform infrared spectroscopy. Pharm Res 12(9):1250–1259

    Article  CAS  Google Scholar 

  22. Shiraki K, Kudou M, Fujiwara S, Imanaka T, Takagi M (2002) Biophysical effect of amino acids on the prevention of protein aggregation. J Biochem 132(4):591–595

    Article  CAS  Google Scholar 

  23. Arakawa T, Tsumoto K (2003) The effects of arginine on refolding of aggregated proteins: not facilitate refolding, but suppress aggregation. Biochem Biophys Res Commun 304(1):148–152

    Article  CAS  Google Scholar 

  24. Arakawa T, Kita Y (2000) Protection of bovine serum albumin from aggregation by Tween 80. J Pharm Sci 89(5):646–651

    Article  CAS  Google Scholar 

  25. Qadeer A, Zaman M, Khan RH (2014) Inhibitory effect of post-micellar SDS concentration on thermal aggregation and activity of papain. BioChemistry 79(8):785–796

    CAS  Google Scholar 

  26. Gitlin I, Gudiksen KL, Whitesides GM (2006) Peracetylated bovine carbonic anhydrase (BCA-Ac18) is kinetically more stable than native BCA to sodium dodecyl sulfate. J Phys Chem B 110(5):2372–2377

    Article  CAS  Google Scholar 

  27. Nielsen AD, Borch K, Westh P (2007) Thermal stability of Humicola insolens cutinase in aqueous SDS. J Phys Chem B 111(11):2941–2947

    Article  CAS  Google Scholar 

  28. Yamamoto S, Hasegawa K, Yamaguchi I, Tsutsumi S, Kardos J, Goto Y, Gejyo F, Naiki H (2004) Low concentrations of sodium dodecyl sulfate induce the extension of beta 2-microglobulin-related amyloid fibrils at a neutral pH. BioChemistry 43(34):11075–11082

    Article  CAS  Google Scholar 

  29. Ahmad MF, Ramakrishna T, Raman B, Rao Ch M (2006) Fibrillogenic and non-fibrillogenic ensembles of SDS-bound human alpha-synuclein. J Mol Biol 364(5):1061–1072

    Article  CAS  Google Scholar 

  30. Mahanta SK, Sastry MV, Surolia A (1990) Topography of the combining region of a Thomsen-Friedenreich-antigen-specific lectin jacalin (Artocarpus integrifolia agglutinin). A thermodynamic and circular-dichroism spectroscopic study. Biochem J 265(3):831–840

    Article  CAS  Google Scholar 

  31. Mahanta SK, Sanker S, Rao NV, Swamy MJ, Surolia A (1992) Primary structure of a Thomsen-Friedenreich-antigen-specific lectin, jacalin [Artocarpus integrifolia (jack fruit) agglutinin]. Evidence for the presence of an internal repeat. Biochem J 284(Pt 1):95–101

    Article  CAS  Google Scholar 

  32. Sharon N (1998) Lectins: from obscurity into the limelight. Protein Science : a publication of the protein. Society 7(9):2042–2048

    CAS  Google Scholar 

  33. Sahasrabuddhe AA, Gaikwad SM, Krishnasastry MV, Khan MI (2004) Studies on recombinant single chain Jacalin lectin reveal reduced affinity for saccharides despite normal folding like native Jacalin. Protein Sci 13(12):3264–3273

    Article  CAS  Google Scholar 

  34. Agrawal BB, Goldstein IJ (1967) Physical and chemical characterization of concanavalin A, the hemagglutinin from jack bean (Canavalia ensiformis). Biochim Biophys Acta 133(2):376–379

    Article  CAS  Google Scholar 

  35. Sastry MV, Surolia A (1986) Intrinsic fluorescence studies on saccharide binding to Artocarpus integrifolia lectin. Biosci Rep 6(10):853–860

    Article  CAS  Google Scholar 

  36. Sastry MV, Banarjee P, Patanjali SR, Swamy MJ, Swarnalatha GV, Surolia A (1986) Analysis of saccharide binding to Artocarpus integrifolia lectin reveals specific recognition of T-antigen (beta-D-Gal(1––3)D-GalNAc). J Biol Chem 261(25):11726–11733

    CAS  Google Scholar 

  37. Kelly SM, Price NC (2000) The use of circular dichroism in the investigation of protein structure and function. Curr Protein Pept Sci 1(4):349–384

    Article  CAS  Google Scholar 

  38. Badraghi J, Moosavi-Movahedi AA, Saboury AA, Yousefi R, Sharifzadeh A, Hong J, Haertle T, Niasari-Naslaji A, Sheibani N (2009) Dual behavior of sodium dodecyl sulfate as enhancer or suppressor of insulin aggregation and chaperone-like activity of camel alphaS(1)-casein. Int J Biol Macromol 45(5):511–517

    Article  CAS  Google Scholar 

  39. Khan JM, Qadeer A, Chaturvedi SK, Ahmad E, Rehman SA, Gourinath S, Khan RH (2012) SDS can be utilized as an amyloid inducer: a case study on diverse proteins. PLoS ONE 7(1):12

    Article  Google Scholar 

  40. Demetrius L (2002) Thermodynamics and kinetics of protein folding: an evolutionary perspective. J Theor Biol 217(3):397–411

    Article  CAS  Google Scholar 

  41. Ou WB, Park YD, Zhou HM (2002) Effect of osmolytes as folding aids on creatine kinase refolding pathway. Int J Biochem Cell Biol 34(2):136–147

    Article  CAS  Google Scholar 

  42. Van Gelder P, De Cock H, Tommassen J (1994) Detergent-induced folding of the outer-membrane protein PhoE, a pore protein induced by phosphate limitation. Eur J Biochem 226(3):783–787

    Article  Google Scholar 

  43. Rariy RV, Klibanov AM (1997) Correct protein folding in glycerol. Proc Natl Acad Sci USA 94(25):13520–13523

    Article  CAS  Google Scholar 

  44. Meng F, Park Y, Zhou H (2001) Role of proline, glycerol, and heparin as protein folding aids during refolding of rabbit muscle creatine kinase. Int J Biochem Cell Biol 33(7):701–709

    Article  CAS  Google Scholar 

  45. Bolen DW (2001) Protein stabilization by naturally occurring osmolytes. Methods Mol Biol 168:17–36

    CAS  Google Scholar 

  46. Mahler HC, Friess W, Grauschopf U, Kiese S (2009) Protein aggregation: pathways, induction factors and analysis. J Pharm Sci 98(9):2909–2934

    Article  CAS  Google Scholar 

  47. Kabir S (1998) Jacalin: a jackfruit (Artocarpus heterophyllus) seed-derived lectin of versatile applications in immunobiological research. J Immunol Methods 212(2):193–211

    Article  CAS  Google Scholar 

  48. Komath SS, Bhanu K, Maiya BG, Swamy MJ (2000) Binding of porphyrins by the tumor-specific lectin, jacalin [Jack fruit (Artocarpus integrifolia) agglutinin]. Biosci Rep 20 (4):265–276

    Article  CAS  Google Scholar 

  49. Levy JG (1995) Photodynamic therapy. Trends Biotechnol 13(1):14–18. doi:10.1016/s0167-7799(00)88895-2

    Article  CAS  Google Scholar 

  50. Ayaz Ahmed KB, Mohammed AS, Veerappan A (2015) Interaction of sugar stabilized silver nanoparticles with the T-antigen specific lectin, jacalin from Artocarpus integrifolia. Spectrochim Acta A Mol Biomol Spectrosc 145:110–116

    Article  CAS  Google Scholar 

  51. Obaid G, Chambrier I, Cook MJ, Russell DA (2015) Cancer targeting with biomolecules: a comparative study of photodynamic therapy efficacy using antibody or lectin conjugated phthalocyanine-PEG gold nanoparticles. Photochem Photobiol Sci 14(4):737–747

    Article  CAS  Google Scholar 

  52. Richardson JS, Richardson DC (2002) Natural beta-sheet proteins use negative design to avoid edge-to-edge aggregation. Proc Natl Acad Sci USA 99(5):2754–2759

    Article  CAS  Google Scholar 

  53. Rizo J, Blanco FJ, Kobe B, Bruch MD, Gierasch LM (1993) Conformational behavior of Escherichia coli OmpA signal peptides in membrane mimetic environments. BioChemistry 32(18):4881–4894

    Article  CAS  Google Scholar 

  54. Zhong L, Johnson WC Jr (1992) Environment affects amino acid preference for secondary structure. Proc Natl Acad Sci USA 89(10):4462–4465

    Article  CAS  Google Scholar 

  55. Stenstam A, Khan A, Wennerström H (2001) The lysozyme–dodecyl sulfate system. An example of protein–surfactant aggregation. Langmuir 17(24):7513–7520. doi:10.1021/la011096t

    Article  CAS  Google Scholar 

  56. Yagi H, Ban T, Morigaki K, Naiki H, Goto Y (2007) Visualization and classification of amyloid beta supramolecular assemblies. BioChemistry 46(51):15009–15017

    Article  CAS  Google Scholar 

  57. Villegas V, Zurdo J, Filimonov VV, Avilés FX, Dobson CM, Serrano L (2000) Protein engineering as a strategy to avoid formation of amyloid fibrils. Protein science : a publication of the protein. Society 9(9):1700–1708

    CAS  Google Scholar 

  58. Khan JM, Khan MS, Ali MS, Al-Shabib NA, Khan RH (2016) Cetyltrimethylammonium bromide (CTAB) promote amyloid fibril formation in carbohydrate binding protein (concanavalin A) at physiological pH. RSC Adv 6(44):38100–38111. doi:10.1039/c6ra03707k

    Article  CAS  Google Scholar 

  59. Mihara H, Takahashi Y (1997) Engineering peptides and proteins that undergo alpha-to-beta transitions. Curr Opin Struct Biol 7(4):501–508

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank Dr. Athi N.Naganathan, IIT, Madras for allowing us to use the UV CD instrument. L.V is recipient of SRF and B.A.K is JRF from BSAU. SJ, KAK and NA are Assistant Professors at BSAU. Financial assistance was provided by BSAU.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Neesar Ahmed.

Ethics declarations

Conflict of interest

The authors declare that they have no conflicts of interest.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lavanya, V., Anil Kumar, B., Jamal, S. et al. Sub-Micellar Concentration of Sodium Dodecyl Sulphate Prevents Thermal Denaturation Induced Aggregation of Plant Lectin, Jacalin. Protein J 36, 17–27 (2017). https://doi.org/10.1007/s10930-017-9694-1

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10930-017-9694-1

Keywords

Navigation