Skip to main content
Log in

Preparation of the Extracellular Domain of Recombinant Human Toll-like Receptor 6

  • Published:
The Protein Journal Aims and scope Submit manuscript

Abstract

Toll-like receptors (TLRs) mediate immune responses upon recognition of a variety of ligands. To further elucidate the function of TLRs, it is important to identify novel ligands and their action mechanisms including polymer assembly. In this study, we propose an efficient method for preparation of the extracellular domain of human Toll-like receptor 6 (TLR6ED) in Escherichia coli using the bubbling cultivation method. Our preparation method improved the level of expression of TLR6ED into a soluble fraction as compared with typical cultivation using a rotary shaker. Circular dichroism (CD) experiments confirmed the structural formation of TLR6ED with secondary structure contents similar to leucine-rich repeat (LRR) modules. In addition, we also provided a procedure for preparing this recombinant protein using Sf9 insect cells, which ensures preservation of some key posttranslational modifications often lacking in bacteria-expressed proteins. These materials would be useful for analyzing novel molecules that bind directly to TLR6, complex formations with other regulators including TLR2 and TLR4, and the functional effects of N-linked glycosylation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

TLR:

Toll-like receptor

LRR:

Leucine-rich repeat

PAMP:

Pathogen-associated molecular pattern

TLR6ED :

Extracellular domain of human TLR6

Sf9:

Spodoptera frugiperda 9

PCR:

Polymerase chain reaction

GST:

Glutathione S-transferase

LB:

Lysogeny-Broth

OD600 :

Optical density at 600 nm

IPTG:

Isopropyl β-d-1-thiogalactopyranoside

SDS-PAGE:

Sodium dodecyl sulphate-polyacrylamide gel electrophoresis

CBB:

Coomassie Brilliant Blue

MOI:

Multiplicity of infection

PBS:

Phosphate buffered saline

CD:

Circular dichroism

DLS:

Dynamic light scattering

VLRB:

Variable lymphocyte receptor B

References

  1. Janeway CAJ, Medzhitov R (2002) Innate immune recognition. Annu Rev Immunol 20:197–216

    Article  CAS  Google Scholar 

  2. Bell JK, Mullen GE, Leifer CA, Mazzoni A, Davies DR, Segal DM (2003) Leucine-rich repeats and pathogen recognition in Toll-like receptors. Trends Immunol 24(10):528–533

    Article  CAS  Google Scholar 

  3. Slack JL, Schooley K, Bonnert TP, Mitcham JL, Qwarnstrom EE, Sims JE, Dower SK (2000) Identification of two major sites in the type I interleukin-1 receptor cytoplasmic region responsible for coupling to pro-inflammatory signaling pathways. J Biol Chem 275(7):4670–4678

    Article  CAS  Google Scholar 

  4. Kulkarni R, Behboudi S, Sharif S (2011) Insights into the role of Toll-like receptors in modulation of T cell responses. Cell Tissue Res 343(1):141–152

    Article  CAS  Google Scholar 

  5. Akira S, Takeda K (2004) Toll-like receptor signaling. Nat Rev Immunol 4(7):499–511

    Article  CAS  Google Scholar 

  6. Oliveira-Nascimento L, Massari P, Wetzler LM (2012) The role of TLR2 in infection and immunity. Front Immunol 3:79

    Article  Google Scholar 

  7. Shimizu T, Kida Y, Kuwano K (2008) Ureaplasma parvum lipoproteins, including MB antigen, activate NF-κB through TLR1, TLR2 and TLR6. Microbiology 154(Pt 5):1318–1325

    Article  CAS  Google Scholar 

  8. Stewart CR, Stuart LM, Wilkinson K, van Gils JM, Deng J, Halle A, Rayner KJ, Boyer L, Zhong R, Frazier WA, Lacy-Hulbert A, El Khoury J, Golenbock DT, Moore KJ (2010) CD36 ligands promote sterile inflammation through assembly of a Toll-like receptor 4 and 6 heterodimer. Nat Immunol 11(2):155–161

    Article  CAS  Google Scholar 

  9. Kato Y, Sawano Y, Tanokura M (2006) Expression and purification of active WW domains of FBP11/HYPA and FBP28/CA150. Protein Pept Lett 13(2):197–201

    Article  CAS  Google Scholar 

  10. Scholtz JM, Qian H, York EJ, Stewart JM, Baldwin RL (1991) Parameters of helix-coil transition theory for alanine-based peptides of varying chain lengths in water. Biopolymers 31(13):1463–1470

    Article  CAS  Google Scholar 

  11. Provencher SW, Glöckner J (1981) Estimation of globular protein secondary structure from circular dichroism. Biochemistry 20(1):33–37

    Article  CAS  Google Scholar 

  12. Käll L, Krogh A, Sonnhammer EL (2007) Advantages of combined transmembrane topology and signal peptide prediction—the Phobius web server. Nucleic Acids Res 35(2):W429–W432

    Article  Google Scholar 

  13. Takeuchi O, Kawai T, Sanjo H, Copeland NG, Gilbert DJ, Jenkins NA, Takeda K, Akira S (1999) TLR6: a novel member of an expanding Toll-like receptor family. Gene 231(1–2):59–65

    Article  CAS  Google Scholar 

  14. Kang JY, Nan X, Jin MS, Youn SJ, Ryu YH, Mah S, Han SH, Lee H, Paik SG, Lee JO (2009) Recognition of lipopeptide patterns by Toll-like receptor 2-Toll-like receptor 6 heterodimer. Immunity 31(6):873–884

    Article  CAS  Google Scholar 

  15. Enkhbayar P, Kamiya M, Osaki M, Matsumoto T, Matsushima N (2004) Structural principles of leucine-rich repeat (LRR) proteins. Proteins 54(3):394–403

    Article  CAS  Google Scholar 

  16. Ozinsky A, Underhill DM, Fontenot JD, Hajjar AM, Smith KD, Wilson CB, Schroeder L, Aderem A (2000) The repertoire for pattern recognition of pathogens by the innate immune system is defined by cooperation between toll-like receptors. Proc Natl Acad Sci USA 97(25):13766–13771

    Article  CAS  Google Scholar 

  17. Jin MS, Kim SE, Heo JY, Lee ME, Kim HM, Paik SG, Lee H, Lee JO (2007) Crystal structure of the TLR1-TLR2 heterodimer induced by binding of a tri-acylated lipopeptide. Cell 130(6):1071–1082

    Article  CAS  Google Scholar 

  18. Liu L, Botos I, Wang Y, Leonard JN, Shiloach J, Segal DM, Davies DR (2008) Structural basis of toll-like receptor 3 signaling with double-stranded RNA. Science 320(5874):379–381

    Article  CAS  Google Scholar 

  19. Park BS, Song DH, Kim HM, Choi BS, Lee H, Lee JO (2009) The structural basis of lipopolysaccharide recognition by the TLR4-MD-2 complex. Nature 458(7242):1191–1195

    Article  CAS  Google Scholar 

  20. Hyakushima N, Mitsuzawa H, Nishitani C, Sano H, Kuronuma K, Konishi M, Himi T, Miyake K, Kuroki Y (2004) Interaction of soluble form of recombinant extracellular TLR4 domain with MD-2 enables lipopolysaccharide binding and attenuates TLR4-mediated signaling. J Immunol 173(11):6949–6954

    Article  CAS  Google Scholar 

  21. da Silva Correia J, Ulevitch RJ (2002) MD-2 and TLR4 N-linked glycosylations are important for a functional lipopolysaccharide receptor. J Biol Chem 277(3):1845–1854

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by a Grant-in-Aid for Scientific Research (S) (Grant Number 23228003) from the Japan Society for the Promotion of Science (JSPS) and the Platform for Drug Discovery, Informatics, and Structural Life Science of the Ministry of Education, Culture, Sports, Science and Technology (MEXT), Japan.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Masaru Tanokura.

Ethics declarations

Conflict of interest

The authors declare no conflict of interests.

Ethical Approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Miyakawa, T., Kumazawa, A., Fuke, Y. et al. Preparation of the Extracellular Domain of Recombinant Human Toll-like Receptor 6. Protein J 36, 28–35 (2017). https://doi.org/10.1007/s10930-016-9692-8

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10930-016-9692-8

Keywords

Navigation