Skip to main content

Advertisement

Log in

Purification of Glutathione S-Transferase pi from Erythrocytes and Evaluation of the Inhibitory Effect of Hypericin

  • Published:
The Protein Journal Aims and scope Submit manuscript

Abstract

Hypericin is a photosensitizer compound used in the photodynamic therapy (PDT). PDT is an alternative cancer treatment strategy whose function is dependent on the photosensitizers accumulating selectively in tumor cells and following visible or infra-red light induced activation lead to the apoptosis/necrosis of the tumor cells via the formation of reactive oxygen species. Thus, the cellular redox balance is essential for the efficacy of PDT. Among the protective enzyme systems glutathione S-transferases (GST, E.C.2.5.1.18) function in detoxification, protection against oxidative stress and intracellular transport of molecules. It is known that isoenzymes of GST and especially GST-pi is increased in cancer cells and it plays very important functions in the development of resistance to anticancer drugs. Since photosensitizers are used intravenously, it is important to elucidate the effects of photosensitizers on the erythrocyte enzymes. The aim of the present study was to investigate the impact of hypericin on human erythrocyte GST-pi (heGST-pi). Purification yield of 71 % and purification fold of 2550 were achieved by using conventional chromatographic methods. The specific activity of the enzyme is found as 51 U/mg protein. Hypericin inhibited heGST-pi in a dose dependent manner and inhibition was biphasic. Noncompetitive type of inhibition was observed with both substrates, GSH and CDNB. The inhibitory constant (K i ) values obtained from Lineweaver–Burk, Dixon, secondary plots; slope and y-intercept versus 1/S (substrate) and from non-linear regression analysis were in good correlation: K i (GSH) was calculated as 0.19 ± 0.01 μM and K i (CDNB) as 0.26 ± 0.03 μM.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Abbreviations

CDNB:

1-Chloro-2,4-dinitrobenzene

CYP:

Cytochrome P450

EA:

Ethacrynic acid

ECL:

Enhanced chemilluminescence

EDTA:

Ethylenediaminetetraacetic acid

GSH:

Reduced glutathione

GST:

Glutathione S-transferase

heGST-pi:

Human erythrocyte GST-pi

K i :

Inhibitory constant

K m :

Michaelis constant

PB74:

Polybuffer 74

PBE-94:

Polybuffer exchanger 94

PDT:

Photodynamic therapy

PVDF:

Polyvinyl difluoride

RBC:

Red blood cells

ROS:

Reactive oxygen species

SDS-PAGE:

Sodium dodecyl sulfate polyacrylamide gel electrophoresis

V m :

Maximum velocity

References

  1. Karioti A, Bilia AR (2010) Hypericins as potential leads for new therapeutics. Int J Mol Sci 11(2):562–594

    Article  CAS  Google Scholar 

  2. Kubin A, Wierrani F, Burner U, Alth G, Grünberger W (2005) Hypericin the facts about a controversial agent. Curr Pharm Des 11(2):233–253

    Article  CAS  Google Scholar 

  3. Colasanti A, Kisslinger A, Liuzzi R, Quarto M, Riccio P, Roberti G, Tramontano D, Villani F (2000) Hypericin photosensitization of tumor and metastatic cell lines of human prostate. J Photochem Photobiol B: Biol 54(2):103–107

    Article  CAS  Google Scholar 

  4. Castano AP, Demidova TN, Hamblin MR (2005) Mechanisms in photodynamic therapy: part three-photosensitizer pharmacokinetics, biodistribution, tumor localization and modes of tumor destruction. Photodiagnosis Photodyn Ther 2:91–106

    Article  CAS  Google Scholar 

  5. Lu WD, Atkins WM (2004) A novel antioxidant role for ligandin behavior of glutathione S-transferases: attenuation of the photodynamic effects of hypericin. Biochemistry 43(40):12761–12769

    Article  CAS  Google Scholar 

  6. Halder M, Chowdhury PK, Das R, Mukherjee P, Atkins WM, Petrich JW (2005) Interaction of glutathione S-transferase with hypericin: a photophysical study. J Phys Chem B 109(41):19484–19489

    Article  CAS  Google Scholar 

  7. Dabrowski MJ, Daeda M, Zebala J, Lu WD, Mahajan S, Kavanagh TJ, Atkins WM (2006) Glutathione S transferase P1-1 expression modulates sensitivity of human kidney 283 cells to photodynamic therapy with hypericin. Arch Biochem Biophys 449(1):94–103

    Article  CAS  Google Scholar 

  8. Tuna G, Kulaksız-Erkmen G, Dalmizrak O, Dogan A, Ogus IH, Ozer N (2010) Inhibition characteristics of hypericin on rat small intestine glutathione-S-transferases. Chem Biol Interact 188(1):59–65

    Article  CAS  Google Scholar 

  9. Dalmızrak O, Kulaksız-Erkmen G, Ozer N (2012) Evaluation of the inhibitory impact of hypericin on placental glutathione S-transferase pi. Protein J 31(7):544–549

    Article  Google Scholar 

  10. Armstrong RN (1997) Structure, catalytic mechanism, and evolution of the glutathione transferases. Chem Res Toxicol 10(1):2–18

    Article  CAS  Google Scholar 

  11. Hayes JD, Flanagan JU, Jowsey IR (2005) Glutathione transferases. Annu Rev Pharmacol Toxicol 45:51–88

    Article  CAS  Google Scholar 

  12. Laborde E (2010) Glutathione transferases mediators of signaling pathways involved in cell proliferation and cell death. Cell Death Differ 17:1373–1380

    Article  CAS  Google Scholar 

  13. Ralat LA, Colman RF (2004) Glutathione S-transferase Pi has at least three distinguishable xenobiotic substrate sites close to its glutathione-binding site. J Biol Chem 279(48):50204–50213

    Article  CAS  Google Scholar 

  14. Mannervik B, Board PG, Hayes JD, Listowsky I, Pearson WR (2005) Nomenclature for mammalian soluble glutathione transferases. Methods Enzymol 401:1–8

    Article  CAS  Google Scholar 

  15. Aliya S, Reddana P, Thyagaraju K (2003) Does glutathione S-transferase pi (GST-pi) a marker protein for cancer? Mol Cell Biochem 253:319–327

    Article  CAS  Google Scholar 

  16. Noguti J, Barbisan LF, Cesar A, Seabra CD, Choueri RB, Ribeiro DA (2012) In vivo models for measuring placental glutatione-S-transferase (GST-P 7-7) levels: a suitable biomarker for understanding cancer pathogenesis. Vivo 26(4):647–650

    CAS  Google Scholar 

  17. Coles BF, Kadlubar FF (2005) Human alpha class glutathione-S-transferase: genetic polymorphism, expression, and suscepitibility to disease. Methods Enzymol 401:9–42

    Article  CAS  Google Scholar 

  18. Ha YS, Yan C, Jeong P, Kim WT, Yun SJ, Kim IY, Moon SK, Kim WJ (2011) GSTM1 tissue genotype as a recurrence predictor in non-muscle invasive bladder cancer. J Korean Med Sci 26(2):231–236

    Article  CAS  Google Scholar 

  19. Gobbi M, Moia M, Pirona L, Morizzoni P, Mennini T (2001) In vitro binding studies with two hypericum perforatum extracts—hyperforin, hypericin and biapigenin-on 5-HT6, 5-HT7, GABA(A)/benzodiazepine, sigma, NPY-Y1/Y2 receptors and dopamine transporters. Pharmacopsychiatry 34(Suppl 1):45–48

    Article  Google Scholar 

  20. Suzuki O, Katsumata Y, Oya M, Bladt S, Wagner H (1984) Inhibition of monoamine oxidase by hypericin. Planta Med 50:272–274

    Article  CAS  Google Scholar 

  21. Habig WH, Jakoby WB (1981) Assays for differentiation of glutathione S-transferases. Methods Enzymol 77:398–405

    Article  CAS  Google Scholar 

  22. Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle protein-dye binding. Anal Biochem 72:248–254

    Article  CAS  Google Scholar 

  23. Laemmli UK (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227:680–685

    Article  CAS  Google Scholar 

  24. Segel IH (1976) Biochemical calculations. Wiley, New York

    Google Scholar 

  25. Burnette WN (2011) Western blotting. Clin Chem 57(1):132–133

    Article  CAS  Google Scholar 

  26. Segel IR (1975) Enzyme kinetics. Wiley, New York

    Google Scholar 

  27. Marcus CJ, Habig WH, Jakoby WB (1978) Glutathione transferase from human erythrocytes. Nonidentity with the enzymes from liver. Arch Biochem Biophys 188:287–293

    Article  CAS  Google Scholar 

  28. Guthenberg C, Mannervik B (1981) Glutathione-stransferase (transferase pi) from human placenta is identical or closely related to glutathione-S-transferase (transferase rho) from erythrocytes. Biochim Biophys Acta 661(2):255–260

    Article  CAS  Google Scholar 

  29. Awasthi Y, Singh SV (1984) Purification and characterization of a new form of glutathione-S-transferase from human erythrocytes. Biochem Biophys Res Commun 125(3):1053–1060

    Article  CAS  Google Scholar 

  30. Awasthi YC (2007) Toxicology of glutathione transferases. Taylor & Francis, USA

    Google Scholar 

  31. Boccio GD, Casalone E, Paolo S, Pennelli A, Ilio CD (1986) Isoenzyme patterns of glutathione transferases from mammalian erythrocytes. Biochem Med Metab Biol 36:306–312

    Article  Google Scholar 

  32. Howie AF, Hayes JD, Beckett GJ (1988) Purification of acidic glutathione S-transferases from human lung, placenta and erythrocyte and the development of a specific radioimmunoassay for their measurement. Clin Chim Acta 177(1):65–75

    Article  CAS  Google Scholar 

  33. Meister A (1988) Glutathione metabolism and its selective modification. J Biol Chem 263(33):17205–17208

    CAS  Google Scholar 

  34. Strange RC, Davis BA, Faulder CG, Cotton W, Bain AD, Hopkinson DA, Hume R (1985) The human glutathione S-transferases: developmental aspects of the GST1, GST2, and GST3 loci. Biochem Genet 23(11–12):1011–1028

    Article  CAS  Google Scholar 

  35. Thumser AE, Ivanetich KM (1993) Kinetic mechanism of human erythrocyte acidic isoenzyme rho. Biochim Biophys Acta 1203:115–120

    Article  CAS  Google Scholar 

  36. Galli F, Rovidati S, Benedetti S, Buoncristiani U, Covarelli C, Floridi A, Canestrari F (1999) Overexpression of erythrocyte glutathione S-transferase in uremia and dialysis. Clin Chem 45(10):1781–1788

    CAS  Google Scholar 

  37. Hamed RR, Maharem TM, Abdel-Meguid N, Sabry GM, Abdalla AM, Guneidy RA (2011) Purification and biochemical characterization of glutathione S-transferase from down syndrome and normal children erythrocytes: a comparative study. Res Dev Disabil 32(5):1470–1482

    Article  Google Scholar 

  38. Murray RK, Bender DA, Botham KM, Kennely PJ, Rodwell VW, Weil PA (2009) Harper’s Illustrated Biochemistry. The McGraw-Hill Company, USA

    Google Scholar 

  39. Valko M, Leibfritz D, Moncol J, Cronin MT, Mazur M, Telser J (2007) Free radicals and antioxidants in normal physiological functions and human disease. Int J Biochem Cell Biol 39(1):44–84

    Article  CAS  Google Scholar 

  40. Martirosyan AS, Vardapetyan HR, Tiratsuyan SG, Hovhannisyan AA (2011) Biphasic dose-response of antioxidants in hypericin-induced photohemolysis. Photodiagnosis Photodyn Ther 8(3):282–287

    CAS  Google Scholar 

  41. Fingar VH (1996) Vascular effects of photodynamic therapy. J Clin Laser Med Surg 14:323–328

    CAS  Google Scholar 

  42. Racinet H, Jardon P, Gautron R (1988) Generation of singlet oxygen 1-delta-g photosensitized by hypericin, Kinetic study in non ionic micellar medium. J Chim Phys Phys-Chim Biol 85(10):971–977

    CAS  Google Scholar 

Download references

Acknowledgments

We gratefully thank to Dr. Yasemin Aksoy and Dr. Yaman Muşdal for their support to carry out Western blotting experiments. We also thank to Dr. Umut Gazi for language editing of the manuscript. This work was supported by Hacettepe University Scientific Research Council (HUBAB-011D04101002).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nazmi Ozer.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Turk, S., Kulaksiz Erkmen, G., Dalmizrak, O. et al. Purification of Glutathione S-Transferase pi from Erythrocytes and Evaluation of the Inhibitory Effect of Hypericin. Protein J 34, 434–443 (2015). https://doi.org/10.1007/s10930-015-9638-6

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10930-015-9638-6

Keywords

Navigation