Skip to main content
Log in

Inactivation of the Pore-Forming Toxin Sticholysin I by Peroxynitrite: Protection by Cys Groups Incorporated in the Toxin

  • Published:
The Protein Journal Aims and scope Submit manuscript

Abstract

Sea anemones synthesize a variety of toxic peptides and proteins of biological interest. The Caribbean Sea anemone Stichodactyla helianthus, produces two pore-forming toxins, Sticholysin I (St I) and Stichloysin II (St II), with the ability to form oligomeric pores in cell and lipid bilayers characteristically lacking cysteine in their amino acid sequences. Recently, two mutants of a recombinant variant of Sticholysin I (rSt I) have been obtained with a Cys residue in functionally relevant regions for the pore-forming activity of the toxin: r St I F15C (in the amino terminal sequence) and r St I R52C (in the binding site). Aiming at characterizing the effects of oxidants in toxins devoid (r St I) or containing –SH moieties (r St I F15C and r St I R52C), we measured their hemolytic activity and pore forming capacity prior and after their incubation with peroxynitrite (ONOO). At low ONOO/Toxin ratios, nearly 0.8 Trp groups are modified by each added peroxynitrite molecule, and the toxin activity is reduced in ca. 20 %. On the other hand, in –SH bearing mutants only 0.5 Trp groups are modified by each peroxynitrite molecule and the toxin activity is only reduced in 10 %. The results indicated that Cys is the initial target of the oxidative damage and that Trp residues in Cys-containing toxins were less damaged than those in r St I. This relative protection of Trp groups correlates with a smaller loss of hemolytic activity and permeabilization ability in liposomes and emphasizes the relevance of Trp groups in the pore forming capacity of the toxins.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Abbreviations

DPPC:

1,2-Palmitoyl-sn-glycero-3-phosphatidylcholine

SM:

Sphingomyelin

DTNB:

5,5′-Dithiobis-(2-nitrobenzoic acid)

HA:

Hemolytic activity

H:

Hemolysis percentage

E:

Permeation percentage

RBC:

Red blood cells

t20Hs:

Time required to produce 20 % hemolysis for non-treated toxins

t20Hm:

Time required to produce 20 % hemolysis for treated toxins with peroxynitrite

t20Es:

Time required to produce 20 % of liposomes with pores for non-treated toxins

t20Em:

Time required to produce 20 % of liposomes with pores for treated toxins with peroxynitrite

References

  1. Harvey HL (1990) In: Shier WT, Mebs D (eds) Handbook of toxinology. Marcel Dekker, New York, pp 1–66

  2. Gutiérrez-Aguirre I, Barli A, Podlesek Z, Maček P, Anderluh G, González-Mañas JM (2004) Membrane insertion of the N-terminal α-helix of equinatoxin II, a sea anemone cytolytic toxin. Biochem J 384:421–428

    Article  Google Scholar 

  3. Tejuca M, Dalla Serra M, Ferrreras M, Lanio ME, Menestrina G (1996) Mechanism of membrane permeabilization by Sticholysin I, a cytolysin isolated from the venom of the sea anemone Stichodactyla helianthus. Biochemistry 35:14947–14957

    Article  CAS  Google Scholar 

  4. Kristan K, Podlesek Z, Hojnik V, Gutierrez-Aguirre I, Guncar G, Turk D, Gonzalez-Manas JM, Lakey JH, Macek P, Anderluh G (2004) Pore formation by equinatoxin, a eukaryotic pore-forming toxin, requires a flexible N-terminal region and a stable beta-sandwich. J Biol Chem 279:46509–46517

    Article  CAS  Google Scholar 

  5. Mancheño JM, Martín-Benito J, Martínez-Ripoll M, Gavilanes JG, Hermoso JA (2003) Crystal and electron microscopy structures of Sticholysin II actinoporin reveal insights into the mechanism of membrane pore formation. Structure 11:1319–1328

    Article  Google Scholar 

  6. Hong Q, Gutiérrez-Aguirre I, Barlič A, Malovrh P, Kristan K, Podlesek Z, Maček P, Turk D, González-Mañas JM, Lakey JH, Anderluh G (2002) Two-stepmembrane binding by Equinatoxin II, a pore-forming toxin from the sea anemone, involves an exposed aromatic cluster and a flexible helix. J Biol Chem 277:41916–41924

    Article  CAS  Google Scholar 

  7. García-Linares S, Castrillo I, Bruix M, Menendez M, Alegre-Cebollada J, Martínez-del-Pozo A, Gavilanes J (2013) Three-dimensional structure of the actinoporin sticholysin I. Influence of long-distance effects on protein function. Arch Biochem Biophys 532:39–45

    Article  Google Scholar 

  8. Valle AE, López-Castilla A, Pedrera L, Martínez D, Tejuca M, Campos J, Fando L, Lissi E, Álvarez C, Lanio ME, Pazos F, Schreier S (2011) Cys mutants in functional regions of Sticholysin I clarify the participation of these residues in pores formation. Toxicon 58:8–17

    Article  CAS  Google Scholar 

  9. Groves JT (1999) Peroxynitrite: reactive, invasive and enigmatic. Curr Opin Chem Biol 3:226–235

    Article  CAS  Google Scholar 

  10. Koppenol WH, Moreno JJ, Pryor WA (1992) Peroxynitrite, a cloaked oxidant formed by nitric oxide and superoxide. Chem Res Toxicol 5:834–842

    Article  CAS  Google Scholar 

  11. Pryor WA, Squadrito GL (1995) The chemistry of peroxynitrite: a product from the reaction of nitric oxide with superoxide. Am J Phys 268:L699–L722

    CAS  Google Scholar 

  12. Rugeles MT, Patiño PJ (2009) Inmunología. Una ciencia activa.2.ª edición, Ed universidad de Antioquina

  13. Alvarez B, Radi R (2003) Peroxynitrite reactivity with amino acids and proteins. Amino Acids 25:295–311

    Article  CAS  Google Scholar 

  14. Castro L, Rodriguez M, Radi R (1994) Aconitase is readily inactivated by peroxynitrite, but not by its precursor, nitric oxide. J Biol Chem 269:29409–29415

    CAS  Google Scholar 

  15. Pucciarelli S, Spina M, Montequia F, Lupidi G, Eleuteri AM, Fioretti E, Angeletti M (2005) Peroxynitrite-mediated oxidation of the C85S/C152E mutant of dihydrofolate reductase from Escherichia coli: functional and structural effects. Arch Biochem Biophys 434:221–231

    Article  CAS  Google Scholar 

  16. Van der Vliet A, Halliwell B, Cross CE, Kaur H (1994) Aromatic hydroxylation and nitration of phenylalanine and tyrosine by peroxynitrite: evidence for hydroxyl radical production from peroxynitrite. FEBS Lett 339:89–92

    Article  Google Scholar 

  17. Kem WR, Dunn BM (1988) Separation and characterization of four different aminoacids sequence variants of a sea anemone (Stichodactyla heliantus) protein cytolysin. Toxicon 26:997–1008

    Article  CAS  Google Scholar 

  18. Alvarez C, Lanio ME, Tejuca M, Pazos F, Acevedo AM, Campos AM, Encinas MV, Pertinhez T, Schreier S, Lissi EA (1998) The role of the ionic strength in the enhancement of the hemolytic activity of sticholysin I, a cytolysin from Stichodactyla heliantus. Toxicon 36:165–178

    Article  CAS  Google Scholar 

  19. Celedon G, Venegas F, Campos AM, Lanio ME, Martinez D, Soto C, Alvarez C, Lissi E (2005) Role of endogenous channels in red blood cells response to their exposure to the pore forming toxin Sticholysin II. Toxicon 46:297–307

    Article  CAS  Google Scholar 

  20. Celedón G, Gonzales G, Barrientos D, Pino J, Venegas F, Lissi E, Soto C, Martínez D, Alvarez C, Lanio ME (2008) Stycholysin II, a cytolysin from the sea anemone Stichodactyla helianthus promotes higher hemolysis in aged red blood cells. Toxicon 51:1383–1390

    Article  Google Scholar 

  21. Mayer LD, Hope MJ, Cullis PR (1986) Vesicles of variable sizes produced by a rapid extrusion procedure. Biochim Biophys Acta 858:161–168

    Article  CAS  Google Scholar 

  22. Pazos F, Martínez D, Tejuca M, Valle A, del Pozo A, Álvarez C, Lanio ME, Lissi E (2003) Comparison of pore-forming ability in membranes of a native and a recombinant variant of Sticholysin II from Stichodactyla helianthus. Toxicon 42:571–578

    Article  CAS  Google Scholar 

  23. Martínez D, Otero A, Alvarez C, Pazos F, Tejuca M, Lanio ME, Gutiérrez-Aguirre I, Barlič A, Iloro I, Rodríguez JL, González-Mañas JM, Lissi E (2007) Effect of sphingomyelin and cholesterol in the interaction of St II with lipidic interfaces. Toxicon 49:68–81

    Article  Google Scholar 

  24. Beckman JS, Beckman TW, Chen J, Marshall PA, Freeman BA (1990) Apparent hydroxyl radical production by peroxynitrite: implication for endothelial injury from nitric oxide and superoxide. Proc Natl Acad Sci USA 87:1620–1624

    Article  CAS  Google Scholar 

  25. Lanio ME, Morera V, Alvarez C, Tejuca M, Gomez T, Pazos F (2001) Purification and characterization of two hemolysins from Stichodactyla helianthus. Toxicon 39:187–194

    Article  CAS  Google Scholar 

  26. Lacowickz JR (2006) Principles of fluorescence spectroscopy, 3rd edn. Springer, Singapore

    Book  Google Scholar 

  27. Tibi S, Koppenol WH (2000) Reactions of peroxynitrite with phenolic and carbonyl compounds: flavonoids are not scavengers of peroxynitrite. Helv Chim Acta 83:2412–2424

    Article  CAS  Google Scholar 

  28. Campos AM, Lissi E, Vergara C, Lanio ME, Alvarez C, Pazos I, Morera V, García Y, Martinez D (1999) Kinetics and mechanism of the St I modification by peroxyl radicals. Int J Protein Chem 18:297–305

    Article  CAS  Google Scholar 

  29. Pazos IF, Alvarez C, Lanio ME, Martinez D, Morera V, Lissi E, Campos AM (1998) Modification of sticholysin II hemolytic activity by free radicals. Toxicon 36:1383–1393

    Article  CAS  Google Scholar 

  30. Martinez D, Campos AM, Pazos F, Alvarez C, Lanio ME, Casallanovo F, Schreier S, Salinas RK, Vergara C, Lissi E (2001) Properties of St I and St II, two isotoxins isolated from Stichodactyla helianthus: a comparison. Toxicon 39:1547–1560

    Article  CAS  Google Scholar 

  31. Carballal S, Alvarez B, Turell L, Botti H, Freeman BA, Radi R (2007) Sulfenic acid in human serum albumin. Amino Acids 32:543–551

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Thanks are given to FONDECYT (Project 10702859). LL also acknowledges a doctoral Fellowship. This work was supported by the Iberian American Network CYTED 212RT0467 Biotox.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. León.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

León, L., Lissi, E.A., Celedón, G. et al. Inactivation of the Pore-Forming Toxin Sticholysin I by Peroxynitrite: Protection by Cys Groups Incorporated in the Toxin. Protein J 33, 493–501 (2014). https://doi.org/10.1007/s10930-014-9582-x

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10930-014-9582-x

Keywords

Navigation