Skip to main content
Log in

From data to QSP models: a pipeline for using Boolean networks for hypothesis inference and dynamic model building

  • Original Paper
  • Published:
Journal of Pharmacokinetics and Pharmacodynamics Aims and scope Submit manuscript

Abstract

Quantitative Systems Pharmacology (QSP) models capture the physiological underpinnings driving the response to a drug and express those in a semi-mechanistic way, often involving ordinary differential equations (ODEs). The process of developing a QSP model generally starts with the definition of a set of reasonable hypotheses that would support a mechanistic interpretation of the expected response which are used to form a network of interacting elements. This is a hypothesis-driven and knowledge-driven approach, relying on prior information about the structure of the network. However, with recent advances in our ability to generate large datasets rapidly, often in a hypothesis-neutral manner, the opportunity emerges to explore data-driven approaches to establish the network topologies and models in a robust, repeatable manner. In this paper, we explore the possibility of developing complex network representations of physiological responses to pharmaceuticals using a logic-based analysis of available data and then convert the logic relations to dynamic ODE-based models. We discuss an integrated pipeline for converting data to QSP models. This pipeline includes using k-means clustering to binarize continuous data, inferring likely network relationships using a Best-Fit Extension method to create a Boolean network, and finally converting the Boolean network to a continuous ODE model. We utilized an existing QSP model for the dual-affinity re-targeting antibody flotetuzumab to demonstrate the robustness of the process. Key output variables from the QSP model were used to generate a continuous data set for use in the pipeline. This dataset was used to reconstruct a possible model. This reconstruction had no false-positive relationships, and the output of each of the species was similar to that of the original QSP model. This demonstrates the ability to accurately infer relationships in a hypothesis-neutral manner without prior knowledge of a system using this pipeline.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Emmert-Streib F, Dehmer M (2011) Networks for systems biology: conceptual connection of data and function. IET Syst Biol 5(3):185–207

    Article  CAS  PubMed  Google Scholar 

  2. Berger SI, Iyengar R (2009) Network analyses in systems pharmacology. Bioinformatics 25(19):2466–2472

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Berger SI, Iyengar R (2011) Role of systems pharmacology in understanding drug adverse events. Wiley Interdiscip Rev Syst Biol Med 3(2):129–135

    Article  CAS  PubMed  Google Scholar 

  4. Danhof M (2016) Systems pharmacology–towards the modeling of network interactions. Eur J Pharm Sci 94:4–14

    Article  CAS  PubMed  Google Scholar 

  5. Wist AD, Berger SI, Iyengar R (2009) Systems pharmacology and genome medicine: a future perspective. Genome Med 1(1):11

    Article  PubMed  PubMed Central  Google Scholar 

  6. Del Sol A et al (2010) Diseases as network perturbations. Curr Opin Biotechnol 21(4):566–571

    Article  PubMed  Google Scholar 

  7. Jordan F, Nguyen TP, Liu WC (2012) Studying protein-protein interaction networks: a systems view on diseases. Brief Funct Genomics 11(6):497–504

    Article  CAS  PubMed  Google Scholar 

  8. Biane C, Delaplace F (2017) Abduction based drug target discovery using Boolean control network. International Conference on Computational Methods in Systems Biology. Springer.

  9. Haanstra JR, Bakker BM (2015) Drug target identification through systems biology. Drug Discov Today Technol 15:17–22

    Article  PubMed  Google Scholar 

  10. Huang J. et al (2013) Systematic prediction of pharmacodynamic drug-drug interactions through protein-protein-interaction network. 9(3):e1002998.

  11. Ayyar VS, Jusko W (2020) Transitioning from basic towards systems pharmacodynamic models: lessons from corticosteroids. Pharmacol Rev 72:1–25

    Article  Google Scholar 

  12. Friedrich CM (2016) A model qualification method for mechanistic physiological QSP models to support model-informed drug development. CPT: Pharmacometr Syst Pharmaco 5(2):43–53

    CAS  Google Scholar 

  13. Androulakis IP (2016) Quantitative systems pharmacology: a framework for context. Curr Pharmacol Rep 2(3):152–160

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Androulakis IP (2015) Systems engineering meets quantitative systems pharmacology: from low-level targets to engaging the host defenses. Wiley Interdisc Rev 7(3):101–112

    CAS  Google Scholar 

  15. Peterson MC, Riggs MM (2015) FDA advisory meeting clinical pharmacology review utilizes a quantitative systems pharmacology (QSP) model: a watershed moment. CPT Pharmacometrics Syst Pharmacol 4(3):e00020

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Putnins M, Androulakis IP (2019) Boolean modeling in quantitative systems pharmacology: challenges and opportunities. Crit Rev Biomed Eng 47(6):473–488

    Article  PubMed  Google Scholar 

  17. Kauffman S (1969) Homeostasis and differentiation in random genetic control networks. Nature 224(5215):177–178

    Article  CAS  PubMed  Google Scholar 

  18. Thomas R (1973) Boolean formalization of genetic control circuits. J Theor Biol 42(3):563–585

    Article  CAS  PubMed  Google Scholar 

  19. Glass L, Kauffman SA (1973) The logical analysis of continuous, non-linear biochemical control networks. J Theor Biol 39(1):103–129

    Article  CAS  PubMed  Google Scholar 

  20. Kraeutler MJ, Soltis AR, Saucerman JJ (2010) Modeling cardiac β-adrenergic signaling with normalized-Hill differential equations: comparison with a biochemical model. BMC Syst Biol 4(1):1–12

    Article  Google Scholar 

  21. Morris MK et al (2010) Logic-based models for the analysis of cell signaling networks. Biochemistry 49(15):3216–3224

    Article  CAS  PubMed  Google Scholar 

  22. Balbas-Martinez V et al. (2018) A systems pharmacology model for inflammatory bowel disease. 13(3):e0192949.

  23. Bloomingdale P, Niu J, Mager DE (2018) Boolean network modeling in systems pharmacology. J Pharmacokinet Pharmacodyn 45(1):159–180

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Thakar J et al (2007) Modeling systems-level regulation of host immune responses. PLoS Comput Biol 3(6):e109

    Article  PubMed  PubMed Central  Google Scholar 

  25. Birtwistle M, Mager D, Gallo J (2013) Mechanistic vs Empirical network models of drug action. CPT Pharmacometr Syst Pharmacol 2(9):1–3

    Article  Google Scholar 

  26. Müssel C, Hopfensitz M, Kestler HA (2010) BoolNet—an R package for generation, reconstruction and analysis of Boolean networks. Bioinformatics 26(10):1378–1380

    Article  PubMed  Google Scholar 

  27. Terfve C et al (2012) CellNOptR: a flexible toolkit to train protein signaling networks to data using multiple logic formalisms. BMC Syst Biol 6(1):1–14

    Article  Google Scholar 

  28. Krumsiek J et al (2010) Odefy-from discrete to continuous models. 11(1):1-10

  29. Wittmann DM et al (2009) Transforming Boolean models to continuous models: methodology and application to T-cell receptor signaling. BMC Syst Biol 3(1):98

    Article  PubMed  PubMed Central  Google Scholar 

  30. Carter GW (2005) Inferring network interactions within a cell. Brief Bioinform 6(4):380–389

    Article  CAS  PubMed  Google Scholar 

  31. Wang RS et al (2007) Inferring transcriptional regulatory networks from high-throughput data. Bioinformatics 23(22):3056–3064

    Article  CAS  PubMed  Google Scholar 

  32. Gao S et al (2018) Efficient Boolean modeling of gene regulatory networks via random forest based feature selection and best-fit extension. In: 2018 IEEE 14th International Conference on Control and Automation (ICCA). IEEE

  33. Campagne O et al (2018) Integrated pharmacokinetic/pharmacodynamic model of a bispecific CD3xCD123 DART molecule in nonhuman primates: evaluation of activity and impact of immunogenicity. Clin Cancer Res 24(11):2631–2641

    Article  CAS  PubMed  Google Scholar 

  34. Chichili GR et al (2015) A CD3xCD123 bispecific DART for redirecting host T cells to myelogenous leukemia: preclinical activity and safety in nonhuman primates. Sci Transl Med 7(289):289ra82

    Article  PubMed  Google Scholar 

  35. Boros E, Ibaraki T, Makino K (1998) Error-free and best-fit extensions of partially defined Boolean functions. Inf Comput 140(2):254–283

    Article  Google Scholar 

  36. Saez-Rodriguez J et al (2009) Discrete logic modelling as a means to link protein signalling networks with functional analysis of mammalian signal transduction. Mol Syst Biol 5(1):331

    Article  PubMed  PubMed Central  Google Scholar 

  37. Barman S, Kwon Y-KJPO (2017) A novel mutual information-based Boolean network inference method from time-series gene expression data. PloS One 12(2):e0171097

    Article  PubMed  PubMed Central  Google Scholar 

  38. Lukacs PM, Burnham KP, Anderson DR (2010) Model selection bias and Freedman’s paradox. Ann Inst Stat Math 62(1):117

    Article  Google Scholar 

  39. Nordling TE (2013) Robust inference of gene regulatory networks. PhD, KTH Royal Institute of Technology

  40. Cheng D, Qi H, Li Z (2011) Model construction of Boolean network via observed data. IEEE Trans Neural Netw 22(4):525–536

    Article  PubMed  Google Scholar 

  41. Gonçalves J, Warnick S (2008) Necessary and sufficient conditions for dynamical structure reconstruction of LTI networks. IEEE Trans Autom Control 53(7):1670–1674

    Article  Google Scholar 

  42. Berestovsky N, Nakhleh L (2013) An evaluation of methods for inferring Boolean networks from time-series data. PLoS One 8(6):e66031

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Hopfensitz M et al (2012) Multiscale binarization of gene expression data for reconstructing Boolean networks. IEEE/ACM Trans Comput Biol Bioinform 9(2):487–498

    Article  PubMed  Google Scholar 

  44. Zhou X, Wang X, Dougherty ER (2003) Binarization of microarray data on the basis of a mixture model. J Mol Cancer Ther 2(7):679–684

    CAS  Google Scholar 

  45. Shmulevich I, Kauffman SA, Aldana M (2005) Eukaryotic cells are dynamically ordered or critical but not chaotic. Proc Natl Acad Sci 102(38):13439–13444

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Trinh H-C, Kwon Y-K (2021) A novel constrained genetic algorithm-based Boolean network inference method from steady-state gene expression data. Bioinformatics 37(Supplement_1):i383–i391

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Charlebois DA et al (2007) Effects of microarray noise on inference efficiency of a stochastic model of gene networks. WSEAS Trans Biol Biomed 4:15–21

    CAS  Google Scholar 

  48. Guan KL et al (2000) Negative regulation of the serine/threonine kinase B-Raf by Akt. J Biol Chem 275(35):27354–27359

    Article  CAS  PubMed  Google Scholar 

  49. Trakul N et al (2005) Raf kinase inhibitory protein regulates Raf-1 but not B-Raf kinase activation. J Biol Chem 280(26):24931–24940

    Article  CAS  PubMed  Google Scholar 

  50. Tabus I, Astola J (2001) On the use of MDL principle in gene expression prediction. EURASIP J Appl Signal Process 4:297–303

    Article  Google Scholar 

  51. Kim H, Lee JK, Park TJBB (2007) Boolean networks using the chi-square test for inferring large-scale gene regulatory networks. BMC Bioinformatics 8(1):1–15

    Article  Google Scholar 

  52. Valiant LG (2009) Evolvability. J ACM 56(1):1–21

    Article  Google Scholar 

  53. Abramovici M, Breuer MA, Friedman AD (1990) Digital systems testing and testable design. Vol. 2. Computer science press New York

  54. Sridharan S et al (2012) Boolean modeling and fault diagnosis in oxidative stress response. BMC Genomics 13(6):S4

    Article  PubMed  PubMed Central  Google Scholar 

  55. Layek R et al (2011) Cancer therapy design based on pathway logic. Bioinformatics 27(4):548–555

    Article  CAS  PubMed  Google Scholar 

  56. Lin PC, Khatri SP (2012) Application of Max-SAT-based ATPG to optimal cancer therapy design. BMC Genomics 13(6):S5

    Article  PubMed  PubMed Central  Google Scholar 

  57. Mohanty AK, Datta A, Venkatraj J (2012) Determining the relative prevalence of different subpopulations in heterogeneous cancer tissue. In: Proceedings 2012 IEEE International workshop on genomic signal processing and statistics (GENSIPS). IEEE.

  58. Ghanbarnejad F, Klemm K (2011) Stability of Boolean and continuous dynamics. Phys Rev Lett 107(18):188701

    Article  PubMed  Google Scholar 

  59. Ruiz-Cerdá ML et al (2016) Towards patient stratification and treatment in the autoimmune disease lupus erythematosus using a systems pharmacology approach. Eur J Pharm Sci 94:46–58

    Article  PubMed  Google Scholar 

  60. Saadatpour A, Albert R, Reluga TC (2013) A reduction method for Boolean network models proven to conserve attractors. SIAM J Appl Dyn Syst 12(4):1997–2011

    Article  PubMed  PubMed Central  Google Scholar 

  61. Veliz-Cuba A (2011) Reduction of Boolean network models. J Theor Biol 289:167–172

    Article  PubMed  Google Scholar 

  62. Zanudo JG, Albert R (2013) An effective network reduction approach to find the dynamical repertoire of discrete dynamic networks. Chaos 23(2):025111

    Article  PubMed  Google Scholar 

  63. Weiss JN (1997) The Hill equation revisited: uses and misuses. FASEB J 11(11):835–841

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

IPA acknowledges support from NIH GM131800.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. P. Androulakis.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Putnins, M., Campagne, O., Mager, D.E. et al. From data to QSP models: a pipeline for using Boolean networks for hypothesis inference and dynamic model building. J Pharmacokinet Pharmacodyn 49, 101–115 (2022). https://doi.org/10.1007/s10928-021-09797-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10928-021-09797-2

Keywords

Navigation