Skip to main content

Advertisement

Log in

Prediction of maternal pharmacokinetics using physiologically based pharmacokinetic models: assessing the impact of the longitudinal changes in the activity of CYP1A2, CYP2D6 and CYP3A4 enzymes during pregnancy

  • Original Paper
  • Published:
Journal of Pharmacokinetics and Pharmacodynamics Aims and scope Submit manuscript

Abstract

Concerns over gestational effects on the disposition of drugs has highlighted the need for a better understanding of drug distribution and elimination during pregnancy. This study aimed at predicting maternal drug kinetics using a physiologically based pharmacokinetic (PBPK) modelling approach focusing on the observed gestational changes in three important Cytochrome P450 metabolizing enzymes, namely, CYP1A2, CYP2D6 and CYP3A4 at different gestational weeks (GWs). The Pregnancy PBPK model within the Simcyp Simulator V19 was used to predict the pharmacokinetics of sensitive probes to these enzymes; namely caffeine, theophylline, metoprolol, propranolol, paroxetine, midazolam, nifedipine and rilpivirine. PBPK model predictions were compared against clinical data collated from multiple studies for each compound to cover a wide spectrum of gestational ages. Pregnancy PBPK model predictions were within 2-fold error and indicated that CYP1A2 activity is approximately 0.70, 0.44 and 0.30 fold of the non-pregnant level at the end of the first, second and third trimesters, respectively. On the other hand, CYP2D6 activity increases by 1.36, 2.16 and 3.10 fold of the non-pregnant level at the end of the first, second and third trimesters, respectively. Likewise, CYP3A4 activity increases by 1.25, 1.75 and 2.32 fold of the non-pregnant level at the end of the first, second and third trimesters, respectively. The enzymes activity have been qualified throughout pregnancy. Quantified changes in drug dosing are most relevant during the third trimester, especially for drugs that are mainly eliminated by CYP1A2, CYP2D6 and CYP3A4 enzymes. The provided functions describing the continuous changes to the activity of these enzymes during pregnancy are important when modelling long term pharmacokinetic studies where longitudinal modelling or time-varying covariates are used.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Abbreviations

PBPK:

Physiologically-based pharmacokinetics

GWs:

Gestational weeks

References

  1. Abduljalil K, Furness P, Johnson TN, Rostami-Hodjegan A, Soltani H (2012) Anatomical, physiological and metabolic changes with gestational age during normal pregnancy: a database for parameters required in physiologically based pharmacokinetic modelling. Clin Pharmacokinet 51:365–396. https://doi.org/10.2165/11597440-000000000-00000

    Article  PubMed  CAS  Google Scholar 

  2. Abduljalil K, Badhan RKS (2020) Drug dosing during pregnancy-opportunities for physiologically based pharmacokinetic models. J Pharmacokinet Pharmacodyn E. https://doi.org/10.1007/s10928-020-09698-w

    Article  Google Scholar 

  3. Wienkers LC, Heath TG (2005) Predicting in vivo drug interactions from in vitro drug discovery data. Nat Rev Drug Discov 4:825–833. https://doi.org/10.1038/nrd1851

    Article  PubMed  CAS  Google Scholar 

  4. Wilkinson GR (2005) Drug metabolism and variability among patients in drug response. N Engl J Med 352:2211–2221. https://doi.org/10.1056/NEJMra032424

    Article  PubMed  CAS  Google Scholar 

  5. Zanger UM, Schwab M (2013) Cytochrome P450 enzymes in drug metabolism: regulation of gene expression, enzyme activities, and impact of genetic variation. Pharmacol Ther 138:103–141. https://doi.org/10.1016/j.pharmthera.2012.12.007

    Article  CAS  Google Scholar 

  6. Chen W, Xiao Y, Chen J, Liu J, Shao J, Li T, Zhu Y, Ma J, Gao Y, Wang J, Xu J, Lu Y, Jia L (2017) Sex-related pharmacokinetic differences and mechanisms of metapristone (RU486 metabolite). Sci Rep 7:17190. https://doi.org/10.1038/s41598-017-17225-0

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  7. Zucker I, Prendergast BJ (2020) Sex differences in pharmacokinetics predict adverse drug reactions in women. Biol Sex Differ 11:32. https://doi.org/10.1186/s13293-020-00308-5

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  8. Beierle I, Meibohm B, Derendorf H (1999) Gender differences in pharmacokinetics and pharmacodynamics. Int J Clin Pharmacol Ther 37:529–547

    PubMed  CAS  Google Scholar 

  9. Tracy TS, Venkataramanan R, Glover DD, Caritis SN, National Institute for Child H, Human Development Network of Maternal-Fetal-Medicine U (2005) Temporal changes in drug metabolism (CYP1A2, CYP2D6 and CYP3A Activity) during pregnancy. Am J Obstet Gynecol 192:633–639. https://doi.org/10.1016/j.ajog.2004.08.030

    Article  PubMed  CAS  Google Scholar 

  10. Tsutsumi K, Kotegawa T, Matsuki S, Tanaka Y, Ishii Y, Kodama Y, Kuranari M, Miyakawa I, Nakano S (2001) The effect of pregnancy on cytochrome P4501A2, xanthine oxidase, and N-acetyltransferase activities in humans. Clin Pharmacol Ther 70:121–125. https://doi.org/10.1067/mcp.2001.116495

    Article  PubMed  CAS  Google Scholar 

  11. Ryu RJ, Eyal S, Easterling TR, Caritis SN, Venkataraman R, Hankins G, Rytting E, Thummel K, Kelly EJ, Risler L, Phillips B, Honaker MT, Shen DD, Hebert MF (2016) Pharmacokinetics of metoprolol during pregnancy and lactation. J Clin Pharmacol 56:581–589. https://doi.org/10.1002/jcph.631

    Article  PubMed  CAS  Google Scholar 

  12. Rostami-Hodjegan A, Kroemer HK, Tucker GT (1999) In-vivo indices of enzyme activity: the effect of renal impairment on the assessment of CYP2D6 activity. Pharmacogenetics 9:277–286. https://doi.org/10.1097/00008571-199906000-00002

    Article  PubMed  CAS  Google Scholar 

  13. Borges S, Li L, Hamman MA, Jones DR, Hall SD, Gorski JC (2005) Dextromethorphan to dextrorphan urinary metabolic ratio does not reflect dextromethorphan oral clearance. Drug Metab Dispos 33:1052–1055. https://doi.org/10.1124/dmd.104.003459

    Article  PubMed  CAS  Google Scholar 

  14. Hebert MF, Easterling TR, Kirby B, Carr DB, Buchanan ML, Rutherford T, Thummel KE, Fishbein DP, Unadkat JD (2008) Effects of pregnancy on CYP3A and P-glycoprotein activities as measured by disposition of midazolam and digoxin: a University of Washington specialized center of research study. Clin Pharmacol Ther 84:248–253. https://doi.org/10.1038/clpt.2008.1clpt20081

    Article  PubMed  CAS  Google Scholar 

  15. Kanto J, Sjovall S, Erkkola R, Himberg JJ, Kangas L (1983) Placental transfer and maternal midazolam kinetics. Clin Pharmacol Ther 33:786–791. https://doi.org/10.1038/clpt.1983.107

    Article  PubMed  CAS  Google Scholar 

  16. Gaohua L, Abduljalil K, Jamei M, Johnson TN, Rostami-Hodjegan A (2012) A pregnancy physiologically based pharmacokinetic (p-PBPK) model for disposition of drugs metabolized by CYP1A2, CYP2D6 and CYP3A4. Br J Clin Pharmacol 74:873–885. https://doi.org/10.1111/j.1365-2125.2012.04363.x

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  17. Abduljalil K, Jamei M, Rostami-Hodjegan A, Johnson TN (2014) Changes in individual drug-independent system parameters during virtual paediatric pharmacokinetic trials: introducing time-varying physiology into a paediatric PBPK model. AAPS J 16:568–576. https://doi.org/10.1208/s12248-014-9592-9

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  18. Abduljalil K, Pan X, Pansari A, Jamei M, Johnson TN (2020) Preterm physiologically based pharmacokinetic model. Part II: Applications of the model to predict drug pharmacokinetics in the preterm population. Clin Pharmacokinet 59:501–518. https://doi.org/10.1007/s40262-019-00827-4

    Article  PubMed  CAS  Google Scholar 

  19. Hogstedt S, Lindberg B, Peng DR, Regardh CG, Rane A (1985) Pregnancy-induced increase in metoprolol metabolism. Clin Pharmacol Ther 37:688–692

    Article  CAS  Google Scholar 

  20. Greenblatt DJ, Abernethy DR, Locniskar A, Harmatz JS, Limjuco RA, Shader RI (1984) Effect of age, gender, and obesity on midazolam kinetics. Anesthesiology 61:27–35

    Article  CAS  Google Scholar 

  21. Kim MK, Nightingale C, Nicolau D (2003) Influence of sex on the pharmacokinetic interaction of fleroxacin and ciprofloxacin with caffeine. Clin Pharmacokinet 42:985–996. https://doi.org/10.2165/00003088-200342110-00004

    Article  PubMed  CAS  Google Scholar 

  22. Rodgers T, Rowland M (2006) Physiologically based pharmacokinetic modelling 2: predicting the tissue distribution of acids, very weak bases, neutrals and zwitterions. J Pharm Sci 95:1238–1257. https://doi.org/10.1002/jps.20502

    Article  PubMed  CAS  Google Scholar 

  23. Brazier JL, Ritter J, Berland M, Khenfer D, Faucon G (1983) Pharmacokinetics of caffeine during and after pregnancy. Dev Pharmacol Ther 6:315–322

    Article  CAS  Google Scholar 

  24. Knutti R, Rothweiler H, Schlatter C (1981) Effect of pregnancy on the pharmacokinetics of caffeine. Eur J Clin Pharmacol 21:121–126

    Article  CAS  Google Scholar 

  25. Parsons WD, Pelletier JG (1982) Delayed elimination of caffeine by women in the last 2 weeks of pregnancy. Can Med Assoc J 127:377–380

    PubMed  PubMed Central  CAS  Google Scholar 

  26. Yu T, Campbell SC, Stockmann C, Tak C, Schoen K, Clark EA, Varner MW, Spigarelli MG, Sherwin CM (2016) Pregnancy-induced changes in the pharmacokinetics of caffeine and its metabolites. J Clin Pharmacol 56:590–596. https://doi.org/10.1002/jcph.632

    Article  PubMed  CAS  Google Scholar 

  27. Aldridge A, Bailey J, Neims AH (1981) The disposition of caffeine during and after pregnancy. Semin Perinatol 5:310–314

    PubMed  CAS  Google Scholar 

  28. Haas DM, Hebert MF, Soldin OP, Flockhart DA, Madadi P, Nocon JJ, Chambers CD, Hankins GD, Clark S, Wisner KL, Li L, Renbarger JL, Learman LA (2009) Pharmacotherapy and pregnancy: highlights from the Second International Conference for Individualized Pharmacotherapy in Pregnancy. Clin Transl Sci 2:439–443. https://doi.org/10.1111/j.1752-8062.2009.00166.x

    Article  PubMed  PubMed Central  Google Scholar 

  29. Rasmussen BB, Nielsen KK, Brosen K (1994) Determination of theophylline metabolites in human liver microsomes by high-performance liquid chromatography. Anal Biochem 222:9–13. https://doi.org/10.1006/abio.1994.1446

    Article  PubMed  CAS  Google Scholar 

  30. Cornish HH, Christman AA (1957) A study of the metabolism of theobromine, theophylline, and caffeine in man. J Biol Chem 228:315–323

    PubMed  CAS  Google Scholar 

  31. Levy G, Koysooko R (1976) Renal clearance of theophylline in man. J Clin Pharmacol 16:329–332. https://doi.org/10.1002/j.1552-4604.1976.tb01528.x

    Article  PubMed  CAS  Google Scholar 

  32. Hendeles L, Weinberger M, Bighley L (1977) Absolute bioavailability of oral theophylline. Am J Hosp Pharm 34:525–527

    PubMed  CAS  Google Scholar 

  33. Gardner MJ, Schatz M, Cousins L, Zeiger R, Middleton E, Jusko WJ (1987) Longitudinal effects of pregnancy on the pharmacokinetics of theophylline. Eur J Clin Pharmacol 32:289–295. https://doi.org/10.1007/BF00607577

    Article  PubMed  CAS  Google Scholar 

  34. Lennard MS, Tucker GT, Silas JH, Freestone S, Ramsay LE, Woods HF (1983) Differential stereoselective metabolism of metoprolol in extensive and poor debrisoquin metabolizers. Clin Pharmacol Ther 34:732–737. https://doi.org/10.1038/clpt.1983.242

    Article  PubMed  CAS  Google Scholar 

  35. Jamei M, Turner D, Yang J, Neuhoff S, Polak S, Rostami-Hodjegan A, Tucker G (2009) Population-based mechanistic prediction of oral drug absorption. AAPS J 11:225–237. https://doi.org/10.1208/s12248-009-9099-y

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  36. Hogstedt S, Rane A (1993) Plasma concentration-effect relationship of metoprolol during and after pregnancy. Eur J Clin Pharmacol 44:243–246. https://doi.org/10.1007/BF00271365

    Article  PubMed  CAS  Google Scholar 

  37. Sharma A, Pibarot P, Pilote S, Dumesnil JG, Arsenault M, Belanger PM, Meibohm B, Hamelin BA (2005) Modulation of metoprolol pharmacokinetics and hemodynamics by diphenhydramine coadministration during exercise testing in healthy premenopausal women. J Pharmacol Exp Ther 313:1172–1181. https://doi.org/10.1124/jpet.104.081109

    Article  PubMed  CAS  Google Scholar 

  38. Antunes Nde J, Cavalli RC, Marques MP, Moises EC, Lanchote VL (2015) Influence of gestational diabetes on the stereoselective pharmacokinetics and placental distribution of metoprolol and its metabolites in parturients. Br J Clin Pharmacol 79:605–616. https://doi.org/10.1111/bcp.12523

    Article  PubMed  CAS  Google Scholar 

  39. Lindeberg S, Lundborg P, Regardh CG, Sandstrom B (1987) Disposition of the adrenergic blocker metoprolol and its metabolite OH-metoprolol in maternal plasma, amniotic fluid and capillary blood of the neonate. Eur J Clin Pharmacol 33:363–368. https://doi.org/10.1007/BF00637631

    Article  PubMed  CAS  Google Scholar 

  40. Rose RH, Turner DB, Neuhoff S, Jamei M (2017) Incorporation of the time-varying postprandial increase in splanchnic blood flow into a pbpk model to predict the effect of food on the pharmacokinetics of orally administered high-extraction drugs. AAPS J 19:1205–1217. https://doi.org/10.1208/s12248-017-0099-z

    Article  PubMed  CAS  Google Scholar 

  41. Walle T, Walle K, Mathur RS, Palesch YY, Conradi EC (1994) Propranolol metabolism in normal subjects: association with sex steroid hormones. Clin Pharmacol Ther 56:127–132. https://doi.org/10.1038/clpt.1994.115

    Article  PubMed  CAS  Google Scholar 

  42. Walle T, Walle UK, Cowart TD, Conradi EC (1989) Pathway-selective sex differences in the metabolic clearance of propranolol in human subjects. Clin Pharmacol Ther 46:257–263. https://doi.org/10.1038/clpt.1989.136

    Article  PubMed  CAS  Google Scholar 

  43. O'Hare MF, Kinney CD, Murnaghan GA, McDevitt DG (1984) Pharmacokinetics of propranolol during pregnancy. Eur J Clin Pharmacol 27:583–587

    Article  CAS  Google Scholar 

  44. Hoffmann-Traeger A, Peiker G, Glockner R, Wittmann I, Balogh A, Henschel L (1987) The influence of phenobarbital on the pharmacokinetics of propranolol in pregnancy. Biol Res Pregnancy Perinatol 8:57–59

    PubMed  CAS  Google Scholar 

  45. Sindrup SH, Brosen K, Gram LF, Hallas J, Skjelbo E, Allen A, Allen GD, Cooper SM, Mellows G, Tasker TC et al (1992) The relationship between paroxetine and the sparteine oxidation polymorphism. Clin Pharmacol Ther 51:278–287. https://doi.org/10.1038/clpt.1992.23

    Article  PubMed  CAS  Google Scholar 

  46. Fisher C, Simeon S, Jamei M, Gardner I, Bois YF (2019) VIVD: Virtual in vitro distribution model for the mechanistic prediction of intracellular concentrations of chemicals in in vitro toxicity assays. Toxicol In Vitro 58:42–50. https://doi.org/10.1016/j.tiv.2018.12.017

    Article  CAS  Google Scholar 

  47. Misri S, Kim J, Riggs KW, Kostaras X (2000) Paroxetine levels in postpartum depressed women, breast milk, and infant serum. J Clin Psychiatry 61:828–832. https://doi.org/10.4088/jcp.v61n1104

    Article  PubMed  CAS  Google Scholar 

  48. Ververs FF, Voorbij HA, Zwarts P, Belitser SV, Egberts TC, Visser GH, Schobben AF (2009) Effect of cytochrome P450 2D6 genotype on maternal paroxetine plasma concentrations during pregnancy. Clin Pharmacokinet 48:677–683. https://doi.org/10.2165/11318050-000000000-00000

    Article  PubMed  CAS  Google Scholar 

  49. Westin AA, Brekke M, Molden E, Skogvoll E, Spigset O (2017) Selective serotonin reuptake inhibitors and venlafaxine in pregnancy: changes in drug disposition. PLoS ONE 12:e0181082. https://doi.org/10.1371/journal.pone.0181082

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  50. Avram MJ, Fragen RJ, Caldwell NJ (1983) Midazolam kinetics in women of two age groups. Clin Pharmacol Ther 34:505–508. https://doi.org/10.1038/clpt.1983.205

    Article  PubMed  CAS  Google Scholar 

  51. Raemsch KD, Sommer J (1983) Pharmacokinetics and metabolism of nifedipine. Hypertension 5:18–24. https://doi.org/10.1161/01.hyp.5.4_pt_2.ii18

    Article  CAS  Google Scholar 

  52. Quinney SK, Mohamed AN, Hebert MF, Haas DM, Clark S, Umans JG, Caritis SN, Li L (2012) A semi-mechanistic metabolism model of CYP3A substrates in pregnancy: predicting changes in midazolam and nifedipine pharmacokinetics. CPT Pharmacometrics Syst Pharmacol 1:e2. https://doi.org/10.1038/psp.2012.5

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  53. Prevost RR, Akl SA, Whybrew WD, Sibai BM (1992) Oral nifedipine pharmacokinetics in pregnancy-induced hypertension. Pharmacotherapy 12:174–177

    PubMed  CAS  Google Scholar 

  54. Filgueira GC, Filgueira OA, Carvalho DM, Marques MP, Moises EC, Duarte G, Lanchote VL, Cavalli RC (2015) Analysis of nifedipine in human plasma and amniotic fluid by liquid chromatography-tandem mass spectrometry and its application to clinical pharmacokinetics in hypertensive pregnant women. J Chromatogr B 993–994:20–25. https://doi.org/10.1016/j.jchromb.2015.04.030S1570-0232(15)00242-1[pii]

    Article  Google Scholar 

  55. Rashid TJ, Martin U, Clarke H, Waller DG, Renwick AG, George CF (1995) Factors affecting the absolute bioavailability of nifedipine. Br J Clin Pharmacol 40:51–58. https://doi.org/10.1111/j.1365-2125.1995.tb04534.x

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  56. Foster TS, Hamann SR, Richards VR, Bryant PJ, Graves DA, McAllister RG (1983) Nifedipine kinetics and bioavailability after single intravenous and oral doses in normal subjects. J Clin Pharmacol 23:161–170. https://doi.org/10.1002/j.1552-4604.1983.tb02720.x

    Article  PubMed  CAS  Google Scholar 

  57. Holtbecker N, Fromm MF, Kroemer HK, Ohnhaus EE, Heidemann H (1996) The nifedipine-rifampin interaction. Evidence for induction of gut wall metabolism. Drug Metab Dispos 24:1121–1123

    PubMed  CAS  Google Scholar 

  58. Teder K, Pepeloshev A, Matto V, Meos A (2013) Pharmacopoieal quality of non-expired and expired nifedipine formulations from Estonian and Russian Federation medicinal products market. Acta Pol Pharm 70:539–546

    PubMed  Google Scholar 

  59. Barton JR, Prevost RR, Wilson DA, Whybrew WD, Sibai BM (1991) Nifedipine pharmacokinetics and pharmacodynamics during the immediate postpartum period in patients with preeclampsia. Am J Obstet Gynecol 165:951–954. https://doi.org/10.1016/0002-9378(91)90446-x

    Article  PubMed  CAS  Google Scholar 

  60. U.S. Food and Drug Administration (FDA) (2011) New Drug Application 202022 (Rilpivirine): Clinical Pharmacology and Biopharmacetics Review(s). https://www.accessdata.fda.gov/drugsatfda_docs/nda/2011/202022Orig1s000ClinPharmR.pdf. Accessed 20 Jul 2020

  61. Lade JM, Avery LB, Bumpus NN (2013) Human biotransformation of the nonnucleoside reverse transcriptase inhibitor rilpivirine and a cross-species metabolism comparison. Antimicrob Agents Chemother 57:5067–5079. https://doi.org/10.1128/AAC.01401-13

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  62. Mehta R, Wolstenholme A, Di Lullo K, Fu C, Joshi S, Crauwels H, givens N, vanveggel s, wynne b, adkison k (2018) bioequivalence of a fixed-dose combination tablet of the complete two-drug regimen of dolutegravir and rilpivirine for treatment of HIV-1 infection. Antimicrob Agents Chemother. https://doi.org/10.1128/AAC.00748-18

    Article  PubMed  PubMed Central  Google Scholar 

  63. Crauwels HM, van Heeswijk RP, Buelens A, Stevens M, Boven K, Hoetelmans RM (2013) Impact of food and different meal types on the pharmacokinetics of rilpivirine. J Clin Pharmacol 53:834–840. https://doi.org/10.1002/jcph.107

    Article  PubMed  Google Scholar 

  64. Schalkwijk S, Colbers A, Konopnicki D, Gingelmaier A, Lambert J, van der Ende M, Molto J, Burger D, Pharmacokinetics of newly developed antiretroviral agents in HIVipwN (2017) Lowered rilpivirine exposure during the third trimester of pregnancy in human immunodeficiency virus type 1-infected women. Clin Infect Dis 65:1335–1341. https://doi.org/10.1093/cid/cix534

    Article  PubMed  CAS  Google Scholar 

  65. Osiyemi O, Yasin S, Zorrilla C, Bicer C, Hillewaert V, Brown K, Crauwels HM (2018) Pharmacokinetics, antiviral activity, and safety of rilpivirine in pregnant women with hiv-1 infection: results of a phase 3b, multicenter, open-label study. Infect Dis Ther 7:147–159. https://doi.org/10.1007/s40121-017-0184-8

    Article  PubMed  PubMed Central  Google Scholar 

  66. Tran AH, Best BM, Stek A, Wang J, Capparelli EV, Burchett SK, Kreitchmann R, Rungruengthanakit K, George K, Cressey TR, Chakhtoura N, Smith E, Shapiro DE, Mirochnick M, Team IPP (2016) Pharmacokinetics of rilpivirine in HIV-infected pregnant women. J Acquir Immune Defic Syndr 72:289–296. https://doi.org/10.1097/QAI.0000000000000968

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  67. Obirikorang C, Yeboah FA (2009) Blood haemoglobin measurement as a predictive indicator for the progression of HIV/AIDS in resource-limited setting. J Biomed Sci 16:102. https://doi.org/10.1186/1423-0127-16-102

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  68. Shah S, Smith CJ, Lampe F, Youle M, Johnson MA, Phillips AN, Sabin CA (2007) Haemoglobin and albumin as markers of HIV disease progression in the highly active antiretroviral therapy era: relationships with gender. HIV Med 8:38–45. https://doi.org/10.1111/j.1468-1293.2007.00434.x

    Article  PubMed  CAS  Google Scholar 

  69. Smith MT, Livingstone I, Eadie MJ, Hooper WD, Triggs EJ (1983) Chronic propranolol administration during pregnancy. Matern Pharm 25:481–490

    CAS  Google Scholar 

  70. Lennard MS, Jackson PR, Freestone S, Tucker GT, Ramsay LE, Woods HF (1984) The relationship between debrisoquine oxidation phenotype and the pharmacokinetics and pharmacodynamics of propranolol. Br J Clin Pharmacol 17:679–685. https://doi.org/10.1111/j.1365-2125.1984.tb02403.x

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  71. Walle T, Walle UK, Wilson MJ, Fagan TC, Gaffney TE (1984) Stereoselective ring oxidation of propranolol in man. Br J Clin Pharmacol 18:741–748. https://doi.org/10.1111/j.1365-2125.1984.tb02537.x

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  72. Yu L, Qian M, Liu Y, Yao T, Zeng S (2010) Stereoselective metabolism of propranolol glucuronidation by human UDP-glucuronosyltransferases 2B7 and 1A9. Chirality 22:456–461. https://doi.org/10.1002/chir.20765

    Article  PubMed  CAS  Google Scholar 

  73. Venkatakrishnan K, Obach RS (2005) In vitro-in vivo extrapolation of CYP2D6 inactivation by paroxetine: prediction of nonstationary pharmacokinetics and drug interaction magnitude. Drug Metab Dispos 33:845–852. https://doi.org/10.1124/dmd.105.004077

    Article  PubMed  CAS  Google Scholar 

  74. Kim J (2000) Pharmacokinetics and pharmacodynamics of the selective serotonin reuptake inhibitors, fluoxetine and paroxetine, during pregnancy and the nursing period. PhD Thesis, University of British Columbia, Vancouver

Download references

Acknowledgements

The authors thank Dr. William J. Jusko (State University of New York, Buffalo) for providing theophylline clinical PK data used for model verification, Dr Ruth Clayton for helpful comments and proofreading and Jessica Waite for prompt assistance in preparing the manuscript for submission.

Funding

No funding was received for the preparation of this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Khaled Abduljalil.

Ethics declarations

Conflict of interest

All authors are full-time employees of Certara UK Limited, Simcyp Division. The activities of Certara are supported by a consortium of pharmaceutical companies. The Simcyp Simulator is freely available, following completion of the training workshop, to approved members of academic institutions and other not-for-profit organizations for research and teaching purposes.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Abduljalil, K., Pansari, A. & Jamei, M. Prediction of maternal pharmacokinetics using physiologically based pharmacokinetic models: assessing the impact of the longitudinal changes in the activity of CYP1A2, CYP2D6 and CYP3A4 enzymes during pregnancy. J Pharmacokinet Pharmacodyn 47, 361–383 (2020). https://doi.org/10.1007/s10928-020-09711-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10928-020-09711-2

Keywords

Navigation