Skip to main content

Advertisement

Log in

Application of a hazard-based visual predictive check to evaluate parametric hazard models

  • Original Paper
  • Published:
Journal of Pharmacokinetics and Pharmacodynamics Aims and scope Submit manuscript

Abstract

Parametric models used in time to event analyses are evaluated typically by survival-based visual predictive checks (VPC). Kaplan–Meier survival curves for the observed data are compared with those estimated using model-simulated data. Because the derivative of the log of the survival curve is related to the hazard—the typical quantity modeled in parametric analysis—isolation, interpretation and correction of deficiencies in the hazard model determined by inspection of survival-based VPC’s is indirect and thus more difficult. The purpose of this study is to assess the performance of nonparametric hazard estimators of hazard functions to evaluate their viability as VPC diagnostics. Histogram-based and kernel-smoothing estimators were evaluated in terms of bias of estimating the hazard for Weibull and bathtub-shape hazard scenarios. After the evaluation of bias, these nonparametric estimators were assessed as a method for VPC evaluation of the hazard model. The results showed that nonparametric hazard estimators performed reasonably at the sample sizes studied with greater bias near the boundaries (time equal to 0 and last observation) as expected. Flexible bandwidth and boundary correction methods reduced these biases. All the nonparametric estimators indicated a misfit of the Weibull model when the true hazard was a bathtub shape. Overall, hazard-based VPC plots enabled more direct interpretation of the VPC results compared to survival-based VPC plots.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Cox EH, Veyrat-Follet C, Beal SL, Fuseau E, Kenkare S, Sheiner LB (1999) A population pharmacokinetic-pharmacodynamic analysis of repeated measures time-to-event pharmacodynamic responses: the antiemetic effect of ondansetron. J Pharmacokinet Biopharm 27(6):625–644

    Article  PubMed  CAS  Google Scholar 

  2. Bajaj G, Dombrowsky E, Yu Q, Agarwal B, Barrett JS (2013) Considerations for the prediction of survival time in pancreatic cancer based on registry data. J Pharmacokinet Pharmacodyn 40(4):527–536. doi:10.1007/s10928-013-9327-z

    Article  PubMed  Google Scholar 

  3. Suleiman AA, Frechen S, Scheffler M, Zander T, Kahraman D, Kobe C, Wolf J, Nogova L, Fuhr U (2015) Modeling tumor dynamics and overall survival in advanced non-small-cell lung cancer treated with erlotinib. J Thorac Oncol 10(1):84–92. doi:10.1097/jto.0000000000000330

    Article  PubMed  CAS  Google Scholar 

  4. Therneau TM, Grambsch PM, Fleming TR (1990) Martingale-based residuals for survival models. Biometrika 77(1):147–160. doi:10.2307/2336057

    Article  Google Scholar 

  5. Cox DR, Snell EJ (1968) A general definition of residuals. J R Stat Soc 30(2):248–275. doi:10.2307/2984505

    Google Scholar 

  6. Schoenfeld D (1982) Partial residuals for the proportional hazards regression model. Biometrika 69(1):239–241. doi:10.2307/2335876

    Article  Google Scholar 

  7. Farrington CP (2000) Residuals for proportional hazards models with interval-censored survival data. Biometrics 56(2):473–482

    Article  PubMed  CAS  Google Scholar 

  8. Vu TC, Nutt JG, Holford NH (2012) Disease progress and response to treatment as predictors of survival, disability, cognitive impairment and depression in Parkinson’s disease. Br J Clin Pharmacol 74(2):284–295. doi:10.1111/j.1365-2125.2012.04208.x

    Article  PubMed  PubMed Central  Google Scholar 

  9. Friberg LE, de Greef R, Kerbusch T, Karlsson MO (2009) Modeling and simulation of the time course of asenapine exposure response and dropout patterns in acute schizophrenia. Clin Pharmacol Ther 86(1):84–91. doi:10.1038/clpt.2009.44

    Article  PubMed  CAS  Google Scholar 

  10. Bjornsson MA, Simonsson US (2011) Modelling of pain intensity and informative dropout in a dental pain model after naproxcinod, naproxen and placebo administration. Br J Clin Pharmacol 71(6):899–906. doi:10.1111/j.1365-2125.2011.03924.x

    Article  PubMed  PubMed Central  Google Scholar 

  11. Liu RYC, Ryzin JV (1985) A histogram estimator of the hazard rate with censored data. Ann Stat 13(2):592–605. doi:10.2307/2241197

    Article  Google Scholar 

  12. Van Ryzin J (1973) A histogram method of density estimation. Commun Stat 2(6):493–506. doi:10.1080/03610927308827093

    Google Scholar 

  13. Wang J-L (2014) Smoothing hazard rates. In: Wiley StatsRef: statistics reference online. Wiley, New York. doi:10.1002/9781118445112.stat06057

  14. Ramlau-Hansen H (1983) Smoothing counting process intensities by means of kernel functions. Ann Stat 11(2):453–466. doi:10.2307/2240560

    Article  Google Scholar 

  15. Ramlau-Hansen H (1983) The choice of a kernel function in the graduation of counting process intensities. Scand Actuar J 1983(3):165–182. doi:10.1080/03461238.1983.10408700

    Article  Google Scholar 

  16. Tanner MA, Wong WH (1983) The estimation of the hazard function from randomly censored data by the kernel method. Ann Stat 11(3):989–993. doi:10.2307/2240661

    Article  Google Scholar 

  17. Diehl S, Stute W (1988) Kernel density and hazard function estimation in the presence of censoring. J Multivar Anal 25(2):299–310. doi:10.1016/0047-259X(88)90053-X

    Article  Google Scholar 

  18. Müller H-G, Wang J-L (1990) Locally adaptive hazard smoothing. Probab Theor Relat Fields 85(4):523–538. doi:10.1007/BF01203169

    Article  Google Scholar 

  19. Hess KR, Serachitopol DM, Brown BW (1999) Hazard function estimators: a simulation study. Stat Med 18(22):3075–3088

    Article  PubMed  CAS  Google Scholar 

  20. Nelson W (1972) Theory and applications of hazard plotting for censored failure data. Technometrics 14(4):945–966. doi:10.2307/1267144

    Article  Google Scholar 

  21. Aalen O (1978) Nonparametric inference for a family of counting processes. Ann Stat 6(4):701–726. doi:10.2307/2958850

    Article  Google Scholar 

  22. Watson GS, Leadbetter MR (1964) Hazard analysis. I. Biometrika 51(1/2):175–184. doi:10.2307/2334205

    Article  Google Scholar 

  23. Watson GS, Leadbetter MR (1964) Hazard analysis II. Sankhyā (1961–2002) 26(1):101–116. doi:10.2307/25049316

  24. Bartlett MS (1963) Statistical estimation of density functions. Sankhyā (1961–2002) 25(3):245–254. doi:10.2307/25049271

  25. Epanechnikov VA (1969) Non-parametric estimation of a multivariate probability density. Theor Probab Appl 14(1):153–158. doi:10.1137/1114019

    Article  Google Scholar 

  26. Muller HG, Wang JL (1994) Hazard rate estimation under random censoring with varying kernels and bandwidths. Biometrics 50(1):61–76

    Article  PubMed  CAS  Google Scholar 

  27. Patil PN (1993) Bandwidth choice for nonparametric hazard rate estimation. J Stat Plan Inference 35(1):15–30. doi:10.1016/0378-3758(93)90064-D

    Article  Google Scholar 

  28. Stacy EW (1962) A generalization of the gamma distribution. Ann Math Stat 33(3):1187–1192. doi:10.1214/aoms/1177704481

    Article  Google Scholar 

  29. Stacy EW, Mihram GA (1965) Parameter estimation for a generalized gamma distribution. Technometrics 7(3):349–358. doi:10.2307/1266594

    Article  Google Scholar 

  30. Cox C, Chu H, Schneider MF, Munoz A (2007) Parametric survival analysis and taxonomy of hazard functions for the generalized gamma distribution. Stat Med 26(23):4352–4374. doi:10.1002/sim.2836

    Article  PubMed  Google Scholar 

  31. Cox C, Matheson M (2014) A comparison of the generalized gamma and exponentiated Weibull distributions. Stat Med 33(21):3772–3780. doi:10.1002/sim.6159

    Article  PubMed  PubMed Central  Google Scholar 

  32. Cox DR (1972) Regression models and life-tables. J R Stat Soc 34(2):187–220. doi:10.2307/2985181

    Google Scholar 

  33. Buja A, Hastie T, Tibshirani R (1989) Linear smoothers and additive models. Ann Stat 17(2):453–510. doi:10.2307/2241560

    Article  Google Scholar 

Download references

Acknowledgments

None.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yeamin Huh.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 2171 kb)

Appendix

Appendix

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Huh, Y., Hutmacher, M.M. Application of a hazard-based visual predictive check to evaluate parametric hazard models. J Pharmacokinet Pharmacodyn 43, 57–71 (2016). https://doi.org/10.1007/s10928-015-9454-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10928-015-9454-9

Keywords

Navigation