Skip to main content
Log in

PVA /PDA@g-C3N4 Composite Nanofiber Membranes for Enhanced Photocatalytic Bacteriostasis and Degradation

  • Original Paper
  • Published:
Journal of Polymers and the Environment Aims and scope Submit manuscript

Abstract

In the face of severe environmental problems and resource shortage in the world today, photocatalysis technology has attracted much attention because of its green, efficient and environmentally friendly advantages. Photocatalysis converts solar energy into chemistry energy, which can be applied to water decomposition to produce hydrogen, degradation of organic contamination, CO2 reduction, organic synthesis and other fields. In this paper, poly(dopamine)@carbon nitride (PDA@CN) was synthesized by dopamine self-polymerization on the surface of g-C3N4 and the PVA/PDA@CN composite antibacterial nanofiber membranes were successfully prepared by electrospinning with PVA solution doped with PDA@CN. PDA can play a role in light absorption, electron transfer and adhesion interface. The results showed that PDA had an effect on the light-harvesting ability of PDA@CN, and the visible light capturing ability of PDA@CN increased. From the inhibition results, it could be seen that the PVA/PDA@CN nanofiber membranes with 5% PDA@CN had good inhibition effect on E. coli and S. aureus under visible light irradiation and the maximum inhibition circle radius could reach 10.8 mm and 11.6 mm, respectively, and the inhibition rate of E. coli could be up to 93.1%. According to the results of photocatalytic degradation experiments, the obtained PVA/PDA@CN membranes showed enhanced photocatalytic degradation efficiency under visible light. When the PDA@CN content was 5 wt.%, the removal rate of MB by PVA/PDA@CN membrane reached 98.7%. In addition, the membrane had good thermal stability and excellent mechanical properties, which had great potential for future applications in many fields.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Data Availability 

Data are available on request from the corresponding author.

References

  1. Cui SS, Liu X, Shi YB et al (2022) Construction of atomic-level charge transfer channel in Bi12O17Cl2/MXene heterojunctions for improved visible-light photocatalytic performance. Rare Met 41:2405–2416. https://doi.org/10.1007/s12598-022-02011-3

    Article  CAS  Google Scholar 

  2. Liang X, Dai R, Chang S et al (2022) Antibacterial mechanism of biogenic calcium oxide and antibacterial activity of calcium oxide/polypropylene composites. Colloids Surf A 650:129446. https://doi.org/10.1016/j.colsurfa.2022.129446

    Article  CAS  Google Scholar 

  3. Zhang R, Li Q, Yang L et al (2022) The antibacterial activity and antibacterial mechanism of the tea polyphenol liposomes/lysozyme–chitosan gradual sustained release composite coating. Int J Food Sci Technol 57:3691–3701. https://doi.org/10.1111/ijfs.15694

    Article  CAS  Google Scholar 

  4. Shi Y, Evans JE, Rock KL (2003) Molecular identification of a danger signal that alerts the immune system to dying cells. Nature 425:516–521. https://doi.org/10.1038/nature01991

    Article  CAS  PubMed  Google Scholar 

  5. Qi J, Wu J, Chen J et al (2019) An investigation of the thermal and (bio)degradability of PBS copolyesters based on isosorbide. Polym Degrad Stab 160:229–241. https://doi.org/10.1016/j.polymdegradstab.2018.12.031

    Article  CAS  Google Scholar 

  6. Niiyama E, Uto K, Ebara M (2019) Electrospun PCL-PCL polyblend nanofibers with high- and low-molecular weight for controlled degradation. Chem Lett 48:623–626. https://doi.org/10.1246/cl.190100

    Article  CAS  Google Scholar 

  7. Liu M, Jiao Y, Qin J et al (2021) Boron doped C3N4 nanodots/nonmetal element (S, P, F, Br) doped C3N4 nanosheets heterojunction with synergistic effect to boost the photocatalytic hydrogen production performance. Appl Surf Sci 541:148558. https://doi.org/10.1016/j.apsusc.2020.148558

    Article  CAS  Google Scholar 

  8. Zeng X, Liu Y, Kang Y et al (2020) Simultaneously tuning charge separation and oxygen reduction pathway on graphitic carbon nitride by polyethylenimine for boosted photocatalytic hydrogen peroxide production. ACS Catal 10:3697–3706. https://doi.org/10.1021/acscatal.9b05247

    Article  CAS  Google Scholar 

  9. Yang Y, Zhang D, Fan J et al (2021) Construction of an Ultrathin S-Scheme Heterojunction Based on Few-Layer g-C3N4 and Monolayer Ti3C2Tx MXene for Photocatalytic CO2 Reduction. Solar RRL 5:2000351. https://doi.org/10.1002/solr.202000351

    Article  CAS  Google Scholar 

  10. Jana A, Kumari K, Dey A et al (2019) Fabrication of P-N heterojunction based MoS2 modified CuPc nanoflowers for humidity sensing. Sens Actuators A: Phys 299:111574. https://doi.org/10.1016/j.sna.2019.111574

    Article  CAS  Google Scholar 

  11. Xiao Y, Abulizi A, Okitsu K et al (2023) Facile fabrication of SnO2 modified hierarchical BiOI S-scheme heterojunction photocatalyst with efficient activity for carbon dioxide reduction. J Ind Eng Chem 125:317–324. https://doi.org/10.1016/j.jiec.2023.05.041

    Article  CAS  Google Scholar 

  12. Xiao G, Xu S, Li P et al (2018) Visible-light-driven activity and synergistic mechanism of TiO2@g-C3N4 heterostructured photocatalysts fabricated through a facile and green procedure for various toxic pollutants removal. Nanotechnology 29:315601. https://doi.org/10.1088/1361-6528/aac304

    Article  CAS  PubMed  Google Scholar 

  13. Saidin S, Jumat MA, Mohd Amin NAA et al (2021) Organic and inorganic antibacterial approaches in combating bacterial infection for biomedical application. Mater Sci Eng C Mater Biol Appl 118:111382. https://doi.org/10.1016/j.msec.2020.111382

    Article  CAS  PubMed  Google Scholar 

  14. Tang C, Liu C, Han Y et al (2019) Nontoxic carbon quantum dots/g-C3N4 for efficient photocatalytic inactivation of staphylococcus aureus under visible light. Adv Healthc Mater 8:e1801534. https://doi.org/10.1002/adhm.201801534

    Article  CAS  PubMed  Google Scholar 

  15. Ma S, Zhan S, Jia Y et al (2016) Enhanced disinfection application of Ag-modified g-C3N4 composite under visible light. Appl Catal B 186:77–87. https://doi.org/10.1016/j.apcatb.2015.12.051

    Article  CAS  Google Scholar 

  16. Zhang Y, Antonietti M (2010) Photocurrent generation by polymeric carbon nitride solids: an initial step towards a novel photovoltaic system. Chem Asian J 5:1307–1311. https://doi.org/10.1002/asia.200900685

    Article  CAS  PubMed  Google Scholar 

  17. Ashfaq A, Ikram M, Haider A et al (2021) Nitrogen and carbon nitride-doped TiO2 for multiple catalysis and its antimicrobial activity. Nanoscale Res Lett 16:119. https://doi.org/10.1186/s11671-021-03573-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Zhu B, Zhang L, Cheng B et al (2018) First-principle calculation study of tri-s-triazine-based g-C3N4: A review. Appl Catal B 224:983–999. https://doi.org/10.1016/j.apcatb.2017.11.025

    Article  CAS  Google Scholar 

  19. Wang X, Blechert S, Antonietti M (2012) Polymeric graphitic carbon nitride for heterogeneous photocatalysis. ACS Catal 2:1596–1606. https://doi.org/10.1021/cs300240x

    Article  CAS  Google Scholar 

  20. Qu J, Gao S, Hou Z (2022) Study on the modification of polyvinylidene fluoride with polyurethane to achieve excellent hydrophilic property. Main Group Chem 21:481–489. https://doi.org/10.3233/MGC-210135

    Article  CAS  Google Scholar 

  21. Huang J, Hu J, Shi Y et al (2019) Evaluation of self-cleaning and photocatalytic properties of modified g-C3N4 based PVDF membranes driven by visible light. J Colloid Interface Sci 541:356–366. https://doi.org/10.1016/j.jcis.2019.01.105

    Article  CAS  PubMed  Google Scholar 

  22. Hou J, Liu S, Jiang X et al (2021) Polyaniline/graphite carbon nitride composite coatings with outstanding photo-induced anodic antifouling and antibacterial properties under visible light. Prog Org Coat 154:106203. https://doi.org/10.1016/j.porgcoat.2021.106203

    Article  CAS  Google Scholar 

  23. Ma Y, Chen R, Fei G et al (2022) Enhanced anti-aging and anti-corrosion performance of waterborne epoxy coating layers over the dual effects of g-C3N4 photocatalysis. J Appl Polym Sci 139:52356. https://doi.org/10.1002/app.52356

    Article  CAS  Google Scholar 

  24. Ge JC, Wu G, Yoon SA-O et al (2021) Study on the preparation and lipophilic properties of polyvinyl alcohol (PVA) Nanofiber membranes via green electrospinning. Nanomaterials. https://doi.org/10.3390/nano11102514

    Article  PubMed  PubMed Central  Google Scholar 

  25. Pervez MN, Stylios GK, Liang Y et al (2020) Low-temperature synthesis of novel polyvinylalcohol (PVA) nanofibrous membranes for catalytic dye degradation. J Clean Prod 262:121301. https://doi.org/10.1016/j.jclepro.2020.121301

    Article  CAS  Google Scholar 

  26. Bai X, Song T, Luan J et al (2023) Polyvinyl alcohol/chitosan nanofiber membranes loaded with oxygenated graphitic carbon nitride nanosheets for enhanced photocatalytic bacteriostasis. J Appl Polym Sci. https://doi.org/10.1002/app.54081

    Article  Google Scholar 

  27. He X, Shang H, Wang C et al (2021) Significantly influenced photocatalytic performance for H2O2 generation over ultrathin g-C3N4 through regulating the migration orientation of photogenerated charge carriers. Chin Chem Lett 32:3377–3381. https://doi.org/10.1016/j.cclet.2021.04.028

    Article  CAS  Google Scholar 

  28. Wu Y, Zhou Y, Xu H et al (2018) Highly active, superstable, and biocompatible Ag/Polydopamine/g-C3N4 bactericidal photocatalyst: synthesis, characterization, and mechanism. ACS Sustain Chem Eng 6:14082–14094. https://doi.org/10.1021/acssuschemeng.8b02620

    Article  CAS  Google Scholar 

  29. Augustine R, Hasan A, Yadu Nath VK et al (2018) Electrospun polyvinyl alcohol membranes incorporated with green synthesized silver nanoparticles for wound dressing applications. J Mater Science: Mater Med 29:163. https://doi.org/10.1007/s10856-018-6169-7

    Article  CAS  Google Scholar 

  30. Suganthi S, Vignesh S, Kalyana Sundar J et al (2020) Fabrication of PVA polymer films with improved antibacterial activity by fine-tuning via organic acids for food packaging applications. Appl Water Sci 10:100. https://doi.org/10.1007/s13201-020-1162-y

    Article  CAS  Google Scholar 

  31. Fan L, Zhang H, Gao M et al (2019) Cellulose nanocrystals/silver nanoparticles: in-situ preparation and application in PVA films. Holzforschung. https://doi.org/10.1515/hf-2018-0251

    Article  Google Scholar 

  32. Bai X, Luan J, Song T et al (2023) Chitosan-grafted carbon oxynitride nanoparticles: investigation of photocatalytic degradation and antibacterial activity. Polymers 15:1688. https://doi.org/10.3390/polym15071688

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Zhang H, Zhang X, Zhu M et al (2020) Antibacterial performance of a gold-loaded g-C3N4 nanocomposite system in visible light-dark dual mode. ChemPlusChem 85:2722–2730. https://doi.org/10.1002/cplu.202000676

    Article  CAS  PubMed  Google Scholar 

  34. Liu T, Lu Z, Zhai H et al (2023) Hierarchical porous PLLA@TiO2 fibrous membrane for enhanced and stable photocatalytic degradation efficiency. ACS ES&T Water 3:342–353. https://doi.org/10.1021/acsestwater.2c00424

    Article  CAS  Google Scholar 

  35. Balakumar V, Ramalingam M, Sekar K et al (2021) Fabrication and characterization of carbon quantum dots decorated hollow porous graphitic carbon nitride through polyaniline for photocatalysis. Chem Eng J 426:131739. https://doi.org/10.1016/j.cej.2021.131739

    Article  CAS  Google Scholar 

  36. Yu C, Tan L, Shen S et al (2021) In situ preparation of g-C3N4/polyaniline hybrid composites with enhanced visible-light photocatalytic performance. J Environ Sci (China) 104:317–325. https://doi.org/10.1016/j.jes.2020.08.024

    Article  CAS  PubMed  Google Scholar 

  37. Kang Y, Yang Y, Yin LC et al (2016) Selective breaking of hydrogen bonds of layered carbon nitride for visible light photocatalysis. Adv Mater 28:6471–6477. https://doi.org/10.1002/adma.201601567

    Article  CAS  PubMed  Google Scholar 

  38. Yu Z, Li F, Yang Q et al (2017) Nature-mimic method to fabricate polydopamine/graphitic carbon nitride for enhancing photocatalytic degradation performance. ACS Sustain Chem Eng 5:7840–7850. https://doi.org/10.1021/acssuschemeng.7b01313

    Article  CAS  Google Scholar 

  39. Ma TY, Tang Y, Dai S et al (2014) Proton-functionalized two-dimensional graphitic carbon nitride nanosheet: an excellent metal-/label-free biosensing platform. Small 10:2382–2389. https://doi.org/10.1002/smll.201303827

    Article  CAS  PubMed  Google Scholar 

  40. Dante RC, Martín-Ramos P, Navas-Gracia LM et al (2013) Polymeric carbon nitride nanosheets. J Macromolecular Sci Part B 52:623–631. https://doi.org/10.1080/00222348.2012.716336

    Article  CAS  Google Scholar 

  41. Sun S, Li C, Sun Z et al (2021) In-situ design of efficient hydroxylated SiO2/g-C3N4 composite photocatalyst: Synergistic effect of compounding and surface hydroxylation. Chem Eng J 416:129107. https://doi.org/10.1016/j.cej.2021.129107

    Article  CAS  Google Scholar 

  42. Gong Z, Chen L, Chen K et al (2023) Significantly improved photocatalytic H2O2 generation over PDA-modified g-C3N4 via promoting charge-carriers separation and oxygen adsorption. J Environ Chem Eng 11:109405. https://doi.org/10.1016/j.jece.2023.109405

    Article  CAS  Google Scholar 

  43. Xie A, Zhang K, Wu F et al (2016) Polydopamine nanofilms as visible light-harvesting interfaces for palladium nanocrystal catalyzed coupling reactions. Catal Sci Technol 6:1764–1771. https://doi.org/10.1039/C5CY01330E

    Article  CAS  Google Scholar 

  44. Wu Y, Ding W, Li J (2021) Fabrication of hierarchical nanocomposites through a nature-mimic method: depositing MoS2 nanoparticles on carbon nitride nanotubes by polydopamine coating. J Nanomater. https://doi.org/10.1155/2021/6668393

    Article  Google Scholar 

  45. Liu XBY, Chen M (2023) Polyvinyl alcohol/graphitic carbon nitride composite nanofiber membrane with enhanced antibacterial activity under visible light excitation. Polym Mater Sci Eng 39:71–79. https://doi.org/10.16865/j.cnki.1000-7555.2023.0029

    Article  CAS  Google Scholar 

  46. Liu Y, Ai K, Lu L (2014) Polydopamine and its derivative materials: synthesis and promising applications in energy, environmental, and biomedical fields. Chem Rev 114:5057–5115. https://doi.org/10.1021/cr400407a

    Article  CAS  PubMed  Google Scholar 

  47. Li B, Gao X, Qu J et al (2022) Visible-light-driven antimicrobial activity and mechanism of polydopamine-reduced graphene oxide/BiVO4 composite. Int J Mol Sci 23:7712. https://doi.org/10.3390/ijms23147712

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Bao S, Gao J, Xu T et al (2021) Anti-freezing and antibacterial conductive organohydrogel co-reinforced by 1D silk nanofibers and 2D graphitic carbon nitride nanosheets as flexible sensor. Chem Eng J 411:128470. https://doi.org/10.1016/j.cej.2021.128470

    Article  CAS  Google Scholar 

  49. Kong X, Liu X, Zheng Y et al (2021) Graphitic carbon nitride-based materials for photocatalytic antibacterial application. Mater Sci Engineering: R: Rep 145:100610. https://doi.org/10.1016/j.mser.2021.100610

    Article  Google Scholar 

  50. He D, Zhang Z, Xing Y et al (2020) Black phosphorus/graphitic carbon nitride: a metal-free photocatalyst for green photocatalytic bacterial inactivation under visible light. Chem Eng J 384:123258. https://doi.org/10.1016/j.cej.2019.123258

    Article  CAS  Google Scholar 

  51. Cao Z, Luo Y, Li Z et al (2021) Antibacterial hybrid hydrogels. Macromol Biosci 21:2000252. https://doi.org/10.1002/mabi.202000252

    Article  CAS  Google Scholar 

  52. Wang Y, Lin L, Li F et al (2016) Enhanced photocatalytic bacteriostatic activity towards Escherichia coli using 3D hierarchical microsphere BiOI/BiOBr under visible light irradiation. Photochem Photobiol Sci 15:666–672. https://doi.org/10.1039/c5pp00406c

    Article  CAS  PubMed  Google Scholar 

  53. Sun L, Du T, Hu C et al (2017) Antibacterial activity of graphene oxide/g-C3N4 composite through photocatalytic disinfection under visible light. ACS Sustain Chem Eng 5:8693–8701. https://doi.org/10.1021/acssuschemeng.7b01431

    Article  CAS  Google Scholar 

  54. Zhao H, Yu H, Quan X et al (2014) Fabrication of atomic single layer graphitic-C3N4 and its high performance of photocatalytic disinfection under visible light irradiation. Appl Catal B 152–153:46–50. https://doi.org/10.1016/j.apcatb.2014.01.023

    Article  CAS  Google Scholar 

  55. Xiao W, Huang Z, Tang Y et al (2023) Effect of nano-Ag proportion on the structure of Ag– TiO2–Bi2WO6 photocatalyst and its antibacterial property on Escherichia coli. Opt Mater 137:113539. https://doi.org/10.1016/j.optmat.2023.113539

    Article  CAS  Google Scholar 

  56. Liu T, Li L, Geng X et al (2022) Heterostructured MXene-derived oxides as superior photocatalysts for MB degradation. J Alloys Compd 919:165629. https://doi.org/10.1016/j.jallcom.2022.165629

    Article  CAS  Google Scholar 

  57. Nambiar AP, Pillai R, Vadikkeettil Y et al (2022) Glutaraldehyde-crosslinked poly(vinyl alcohol)/halloysite composite films as adsorbent for methylene blue in water. Mater Chem Phys 291:126752. https://doi.org/10.1016/j.matchemphys.2022.126752

    Article  CAS  Google Scholar 

  58. Jaseela PK, Garvasis J, Joseph A (2019) Selective adsorption of methylene blue (MB) dye from aqueous mixture of MB and methyl orange (MO) using mesoporous titania (TiO2) – poly vinyl alcohol (PVA) nanocomposite. J Mol Liq 286:110908. https://doi.org/10.1016/j.molliq.2019.110908

    Article  CAS  Google Scholar 

  59. Zidan HM, El-Ghamaz NA, Abdelghany AM et al (2018) Photodegradation of methylene blue with PVA/PVP blend under UV light irradiation. Spectrochim Acta Part A Mol Biomol Spectrosc 199:220–227. https://doi.org/10.1016/j.saa.2018.03.057

    Article  CAS  Google Scholar 

  60. Nguyen TKA, Pham T-T, Nguyen-Phu H et al (2021) The effect of graphitic carbon nitride precursors on the photocatalytic dye degradation of water-dispersible graphitic carbon nitride photocatalysts. Appl Surf Sci 537:148027. https://doi.org/10.1016/j.apsusc.2020.148027

    Article  CAS  Google Scholar 

  61. Ishak N, Jeyalakshmi V, Setka M et al (2023) Upgrading of g-C3N4 semiconductor by a nitrogen-doped carbon material: a photocatalytic degradation application. J Environ Chem Eng 11:109381. https://doi.org/10.1016/j.jece.2023.109381

    Article  CAS  Google Scholar 

  62. Kadam AN, Moniruzzaman M, Lee S-W (2019) Dual Functional S-Doped g-C3N4 Pinhole Porous Nanosheets for Selective Fluorescence Sensing of Ag + and Visible-Light Photocatalysis of Dyes. Molecules 24:450. https://doi.org/10.3390/molecules24030450

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Bai M, Xu C, Huang X et al (2021) Preparation of CuSe-PDA/g-C3N4 and its visible-light photocatalytic performance to dye degradation. Environ Sci Pollut Res 28:3465–3474. https://doi.org/10.1007/s11356-020-10747-7

    Article  CAS  Google Scholar 

Download references

Funding

Not applicable

Author information

Authors and Affiliations

Authors

Contributions

LJ made important contributions to the idea and design of the research work, LJ and BX wrote the main text of the manuscript, LJ and LY collected the data, S T prepared figures 1–6, SH prepared figures 7–9 and Table 1–3, YJ and DY determined the final draft, and all the authors reviewed the manuscript.

Corresponding author

Correspondence to Jianxiang Yu.

Ethics declarations

Competing Interests

The authors declare no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 334.5 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Luan, J., Bai, X., Liu, Y. et al. PVA /PDA@g-C3N4 Composite Nanofiber Membranes for Enhanced Photocatalytic Bacteriostasis and Degradation. J Polym Environ 32, 1796–1810 (2024). https://doi.org/10.1007/s10924-023-03099-z

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10924-023-03099-z

Keywords

Navigation