Skip to main content
Log in

Enhancing Natural Polymers-Based Materials Using Montmorillonite: Preparation, Characterization, and Environmental Applications

  • Original Paper
  • Published:
Journal of Polymers and the Environment Aims and scope Submit manuscript

Abstract

Materials based on xanthan (XG), lignin (LB), lignin esters (LBOL and LBST), and montmorillonite (CL) were successfully obtained and used as altered oils adsorbents. The density, porosity, and mechanical properties of the obtained materials were determined. Also, the dynamic vapor sorption test (DVS) was performed to evaluate the sorption capacity and specific surface area of the adsorbents. Scanning electron microscopy (SEM) was used to investigate the morphological aspect of materials. Adsorption experiments of altered argan and sunflower oil onto studied materials were carried out. It was found that XG/CL and XG/CL/LBOL retained the highest amount of both oils (over 75% of the total oil quantity). Kinetic studies indicated that the Pseudo-second-order (PSO) kinetic model provided a better fit to the data. Adsorption equilibrium data were well fitted to Henry, Langmuir, and Freundlich isotherm models. The addition of CL has provided materials with well-organized structures, and reusability in several adsorption/desorption cycles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Wang W, Xie M, Jin H, Zhi W, Liu K, Ma C, Liao P, Huang J, Yan Y (2020) The pressing-induced formation of a large-area supramolecular film for oil capture. Mater Chem Front. https://doi.org/10.1039/d0qm00006j

    Article  PubMed  PubMed Central  Google Scholar 

  2. Li Y, Zhang H, Lin X et al (2023) Facile and green synthesis of Pd-decorated alginate/ nanofibrillated cellulose aerogel for simultaneous dye degradation, oil/water separation and oil collection. J Polym Environ. https://doi.org/10.1007/s10924-023-02947-2

    Article  Google Scholar 

  3. Noor R, Maqsood A, Baig A, Pande CB, Zahra SM, Saad A, Anwar M, Singh SK (2023) A comprehensive review on water pollution, South Asia Region: Pakistan. Urban Clim. https://doi.org/10.1016/j.uclim.2023.101413

    Article  Google Scholar 

  4. Abd El-Ghany NA, Elella MHA, Abdallah HM et al (2023) Recent advances in various Starch Formulation for Wastewater Purification via Adsorption technique: a review. J Polym Environ. https://doi.org/10.1007/s10924-023-02798-x

    Article  Google Scholar 

  5. Tran DNH, Kabiri S, Sim TR, Losic D (2015) Selective adsorption of oil–water mixtures using polydimethylsiloxane (PDMS)–graphene sponges. Environ Sci: Water Res Technol. https://doi.org/10.1039/c5ew00035a

    Article  Google Scholar 

  6. Wahono SK, Cavallaro A, Vasilev K, Mierczynska A (2018) Plasma polymer facilitated magnetic technology for removal of oils from contaminated waters. Environ Pollut. https://doi.org/10.1016/j.envpol.2018.05.023

    Article  PubMed  Google Scholar 

  7. Mi H-Y, Jing X, Politowicz AL, Chen E, Huang H-X, Turng L-S (2018) Highly compressible ultra-light anisotropic cellulose/graphene aerogel fabricated by bidirectional freeze drying for selective oil absorption. Carbon. https://doi.org/10.1016/j.carbon.2018.02.033

    Article  Google Scholar 

  8. Madhubashani AMP, Giannakoudakis DA, Amarasinghe BMWPK, Rajapaksha AU, Terney Pradeep Kumara PB, Triantafyllidis KS, Vithanage M (2021) Propensity and appraisal of biochar performance in removal of oil spills: a comprehensive review. Environ Pollut. https://doi.org/10.1016/j.envpol.2021.117676

    Article  PubMed  Google Scholar 

  9. Fadila CR, Othman MHD, Adam MR, Takagi R, Yoshioka T, Khongnakorn W, Rahman MA, Jaafar J, Ismail AF (2022) Adsorptive membrane for heavy metal removal: material, fabrication, and performance. Mater Today: Proc. https://doi.org/10.1016/j.matpr.2022.03.582

    Article  Google Scholar 

  10. Yang M, Gao Y, Zhang J, Zhou F (2023) Hydrophobic modification of sepiolite by fatty acids for efficient oil removal: influence of the alkyl chain length. Appl Clay Sci. https://doi.org/10.1016/j.clay.2023.106867

    Article  Google Scholar 

  11. Zeng Z-L, Yu C, Liao R-P, Cai X, Chen Z-H, Yu Z, Wu Z-X (2023) Preparation and characterization of sodium polyacrylate grafted montmorillonite nanocomposite for the adsorption of cadmium ions from aqueous solution. Colloids Surf a: Physicochem Eng Asp. https://doi.org/10.1016/j.colsurfa.2022.130389

    Article  Google Scholar 

  12. Abu Elella MH, Goda ES, Abdallah HM, Shalan AE, Gamal H, RoYoon K (2021) Innovative bactericidal adsorbents containing modified xanthan gum/montmorillonite nanocomposites for wastewater treatment. Int J Biol Macromol. https://doi.org/10.1016/j.ijbiomac.2020.11.065

    Article  PubMed  Google Scholar 

  13. Zhang H, Xia M, Wang F, Li P, Shi M (2021) Adsorption properties and mechanism of montmorillonite modified by two Gemini surfactants with different chain lengths for three benzotriazole emerging contaminants: experimental and theoretical study. Appl Clay Sci. https://doi.org/10.1016/j.clay.2021.106086

    Article  Google Scholar 

  14. Rong N, Xu Z, Zhai S, Zhou L, Li J (2021) Directional, super-hydrophobic cellulose nanofiber/polyvinyl alcohol/montmorillonite aerogels as green absorbents for oil/water separation. IET Nanobiotechnol. https://doi.org/10.1049/nbt2.12008

    Article  PubMed  PubMed Central  Google Scholar 

  15. Zhou X, Huang Q (2020) Quantitative evaluation on oil diffusion mechanisms in nano-organic-montmorillonite modified castor oil-based polyurethane foam for oil/water separation. Polym Adv Technol. https://doi.org/10.1002/pat.4853

    Article  Google Scholar 

  16. Lyu W, Li J, Trchová M, Wang G, Liao Y, Bober P, Stejskal J (2022) Fabrication of polyaniline/poly(vinyl alcohol)/montmorillonite hybrid aerogels toward efficient adsorption of organic dye pollutants. J Hazard Mater. https://doi.org/10.1016/j.jhazmat.2022.129004

    Article  PubMed  PubMed Central  Google Scholar 

  17. Resende JF, Paulino IMR, Bergamasco R, Vieira MF, Salcedo Vieira AM (2023) Hydrogels produced from natural polymers: a review on its use and employment in water treatment. Braz J Chem Eng. https://doi.org/10.1007/s43153-022-00224-8

    Article  Google Scholar 

  18. Saruchi KV, Ghfar AA, Pandey S (2023) Oil spill remediation by grafted natural polysaccharide gum tragacanth: its kinetics and isotherms studies. Biomass Convers Biorefin. https://doi.org/10.1007/s13399-022-02665-0

    Article  Google Scholar 

  19. Mota GP, Pereira RG (2022) A comparison of the rheological behavior of xanthan gum and diutan gum aqueous solutions. J Braz Soc Mech Sci Eng. https://doi.org/10.1007/s40430-022-03406-0

    Article  Google Scholar 

  20. Xu L, Liu X, Ding H-Y, Zhang H, Liu L, Li J-H, Gong H-J, Dong M-Z (2022) Temperature/salt tolerance and oil recovery of xanthan gum solution enhanced by surface-modified nanosilicas. Pet Sci. https://doi.org/10.1016/j.petsci.2022.08.020

    Article  Google Scholar 

  21. Becker J, Wittmann C (2019) A field of dreams: lignin valorization into chemicals, materials, fuels, and health-care products. Biotechnol Adv. https://doi.org/10.1016/j.biotechadv.2019.02.016

    Article  PubMed  Google Scholar 

  22. de Souza RE, Gomes FJB, Brito EO, Costa Lelis RC, Ribas Batalha LA, Santos FA, Longue Junior D (2020) A review on lignin sources and uses. Appl Biotechnol Bioeng. https://doi.org/10.15406/jabb.2020.07.00222

    Article  Google Scholar 

  23. Yu O, Ho Kim K (2020) Lignin to materials: a focused review on recent novel lignin applications. Appl Sci. https://doi.org/10.3390/app10134626

    Article  Google Scholar 

  24. Shi Y, Zhong Y, Sun Z, Ma X, Li S, Wang F, An Y, Luo Q, Zhu J, Chen J, Yan N (2022) One-step foam assisted synthesis of robust superhydrophobic lignin-based magnetic foams for highly efficient oil-water separation and rapid solar-driven heavy oil removal. J Water Process Eng. https://doi.org/10.1016/j.jwpe.2022.102643

    Article  Google Scholar 

  25. de Araújo Padilha CE, da Costa Nogueira C, Bivar Matias SC, da Costa Filho JDB, de Santana Souza DF, de Oliveira JA, dos Santos ES (2020) Fabrication of hollow polymer microcapsules and removal of emulsified oil from aqueous environment using soda lignin nanoparticles. Colloids Surf a: Physicochem Eng Asp. https://doi.org/10.1016/j.colsurfa.2020.125260

    Article  Google Scholar 

  26. Tang R, Hu Y, Yan J, Xu S, Wang Y, Yan J, Liao D, Zhang H, Tong Z (2023) Multifunctional carboxylated cellulose nanofibers/exfoliated bentonite/ Ti3C2 aerogel for efficient oil adsorption and recovery: the dual effect of exfoliated bentonite and MXene. Chem Eng J. https://doi.org/10.1016/j.cej.2023.145412

    Article  Google Scholar 

  27. Ratcha A, Yoosuk B, Kongparakul S (2014) Grafted methyl methacrylate and butyl methacrylate onto natural rubber foam for oil sorbent. Adv Mat Res. https://doi.org/10.4028/www.scientific.net/AMR.844.385

    Article  Google Scholar 

  28. Apostol I, Anghel N, Dinu MV, Ziarelli F, Mija A, Spiridon I (2023) An eco-friendly strategy for preparing lignin esters as filler in materials for removal of argan oil and sunflower oil. React Funct Polym. https://doi.org/10.1016/j.reactfunctpolym.2023.105620

    Article  Google Scholar 

  29. Apostol I, Anghel N, Doroftei F, Bele A, Spiridon I (2023) Xanthan or esterified xanthan/cobalt ferrite-lignin hybrid materials for Methyl Blue and Basic Fuchsine dyes removal: equilibrium, kinetic and thermodynamic studies. Mater Today Chem. https://doi.org/10.1016/j.mtchem.2022.101299

    Article  Google Scholar 

  30. Dragan ES, Humelnicu D, Dinu MV (2021) Designing smart triple-network cationic cryogels with outstanding efficiency and selectivity for deep cleaning of phosphate. Chem Eng J. https://doi.org/10.1016/j.cej.2021.131411

    Article  Google Scholar 

  31. Raschip IE, Dinu MV, Fifere N, Darie-Nita R, Pamfil D, Popirda A, Logigan C (2020) Thermal, mechanical and water sorption properties of xanthan-based composite cryogels. Cellulose Chem Technol. https://doi.org/10.35812/CelluloseChemTechnol.2020.54.88

    Article  Google Scholar 

  32. Elmaghraby NA, Omer AM, Kenawy ER, El Gaber M Nemr (2022) Fabrication of cellulose acetate/cellulose nitrate/carbon black nanofiber composite for oil spill treatment. Biomass Conv Bioref. https://doi.org/10.1007/s13399-022-03506-w

    Article  Google Scholar 

  33. Spiridon I, Apostol I, Anghel N, Zaltariov MF (2022) Equilibrium, kinetic, and thermodynamic studies of new materials based on xanthan gum and cobalt ferrite for dye adsorption. Appl Organomet Chem. https://doi.org/10.1002/aoc.6670

    Article  Google Scholar 

  34. Khadhri N, El Khames Saad M, ben Mosbah M, Moussaoui Y (2018) Batch and continuous column adsorption of indigo carmine onto activated carbon derived from date palm petiole. J Environ Chem Eng. https://doi.org/10.1016/j.jece.2018.11.020

    Article  Google Scholar 

  35. Jozanikohan G, Abarghooei MN (2022) The Fourier transform infrared spectroscopy (FTIR) analysis for the clay mineralogy studies in a clastic reservoir. J Petrol Explor Prod Technol. https://doi.org/10.1007/s13202-021-01449-y

    Article  Google Scholar 

  36. Yue X, Liu P, Ning Y, Xu Y (2016) Upgrading poly (butylene succinate)/wood fiber composites by esterified lignin. Compos Interfaces. https://doi.org/10.1080/09276440.2016.1175189

    Article  Google Scholar 

  37. Anwar M, Pervaiz F, Shoukat H, Noreen S, Shabbir K, Majeed A, Ijaz S (2021) Formulation and evaluation of interpenetrating network of xanthan gum and polyvinylpyrrolidone as a hydrophilic matrix for controlled drug delivery system. Polym Bull. https://doi.org/10.1007/s00289-019-03092-4

    Article  Google Scholar 

  38. Wang Y, Yu X, Fan W, Liu R, Liu Y (2022) Alginate-oil gelator composite foam for effective oil spill treatment. Carbohydr Polym. https://doi.org/10.1016/j.carbpol.2022.119755

    Article  PubMed  PubMed Central  Google Scholar 

  39. Raschip IE, Darie-Nita RN, Fifere N, Hitruc G-E, Dinu MV (2023) Correlation between mechanical and morphological properties of polyphenol-laden xanthan gum/poly(vinyl alcohol) composite cryogels. Gels. https://doi.org/10.3390/gels9040281

    Article  PubMed  PubMed Central  Google Scholar 

  40. Dragan ES, Humelnicu D, Dinu MV (2023) Sustainable multi-network cationic cryogels for high-efficiency removal of hazardous oxyanions from aqueous solutions. Polymers. https://doi.org/10.3390/polym15040885

    Article  PubMed  PubMed Central  Google Scholar 

  41. Wei W, Hu X, Qi X, Yu H, Liu Y, Li J, Zhang J, Dong W (2015) A novel thermo-responsive hydrogel based on salecan and poly(N-isopropylacrylamide): synthesis and characterization. Colloids Surf B. https://doi.org/10.1016/j.colsurfb.2014.10.057

    Article  Google Scholar 

  42. Hu X, Feng L, Xie A, Wei W, Wang S, Zhang J, Dong W (2014) Synthesis and characterization of a novel hydrogel: salecan/polyacrylamide semi-IPN hydrogel with a desirable pore structure. J Mater Chem B. https://doi.org/10.1039/C3TB21711F

    Article  PubMed  PubMed Central  Google Scholar 

  43. Dimofte A, Dinu MV, Anghel N, Doroftei F, Spiridon I (2022) Xanthan and alginate-matrix used as transdermal delivery carrier for piroxicam and ketoconazole. Int J Biol Macromol. https://doi.org/10.1016/j.ijbiomac.2022.04.189

    Article  PubMed  Google Scholar 

  44. Dragan ES, Dinu MV, Ghiorghita CA (2022) Chitosan-based polyelectrolyte complex cryogels with elasticity, toughness and delivery of curcumin engineered by polyions pair and cryostructuration steps. Gels. https://doi.org/10.3390/gels8040240

    Article  PubMed  PubMed Central  Google Scholar 

  45. Dragan ES, Ghiorghita CA, Dinu M, Duceac IA, Coseri S (2023) Fabrication of self-antibacterial chitosan/oxidized starch polyelectrolyte complex sponges for controlled delivery of curcumin. Food Hydrocoll. https://doi.org/10.1016/j.foodhyd.2022.108147

    Article  Google Scholar 

  46. Wang D-C, Yu H-Y, Song M-L, Yang R-T, Yao J-M (2017) Superfast adsorption–disinfection cryogels decorated with cellulose nanocrystal/zinc oxide nanorod clusters for water-purifying microdevices. ACS Sustain Chem Eng. https://doi.org/10.1021/acssuschemeng.7b01029

    Article  Google Scholar 

  47. Maharjan B, Park J, Kaliannagounder VK, Awasthi GP, Joshi MK, Park CH et al (2021) Regenerated cellulose nanofiber reinforced chitosan hydrogel scaffolds for bone tissue engineering. Carbohydr Polym. https://doi.org/10.1016/j.carbpol.2020.117023

    Article  PubMed  Google Scholar 

  48. Zare Y, Garmabi H (2014) Modeling of interfacial bonding between two nanofillers (montmorillonite and CaCO3) and a polymer matrix (PP) in a ternary polymer nanocomposite. Appl Surf Sci. https://doi.org/10.1016/j.apsusc.2014.09.156

    Article  Google Scholar 

  49. Jalali MA, Koohi AD, Sheykhan M (2016) Experimental study of the removal of copper ions using hydrogels of xanthan, 2-acrylamido-2-methyl-1-propane sulfonic acid, montmorillonite: kinetic and equilibrium study. Carbohydr Polym. https://doi.org/10.1016/j.carbpol.2016.01.033

    Article  Google Scholar 

  50. Rahmani M, Dadvand Koohi A (2022) Adsorption of malachite green on the modified montmorillonite/xanthan gum-sodium alginate hybrid nanocomposite. Polym Bull. https://doi.org/10.1007/s00289-021-03889-2

    Article  Google Scholar 

  51. Lim SK, Kim JW, Chin I, Kwon YK, Choi HJ (2002) Preparation and interaction characteristics of organically modified montmorillonite nanocomposite with miscible polymer blend of poly(ethylene oxide) and poly(methyl methacrylate). Chem Mater. https://doi.org/10.1021/cm010498j

    Article  Google Scholar 

  52. Wu J, Ma X, Gnanasekar P, Wang F, Zhu J, Yan N, Chen J (2023) Superhydrophobic lignin-based multifunctional polyurethane foam with SiO2 nanoparticles for efficient oil adsorption and separation. Sci Total Environ. https://doi.org/10.1016/j.scitotenv.2022.160276

    Article  PubMed  PubMed Central  Google Scholar 

  53. Budlayan MLM, Patricio JN, Lagare-Oracion JP, Arco SD, Alguno AC, Basilio A, Latayada FS, Capangpangan RY (2021) Improvised centrifugal spinning for the production of polystyrene microfibers from waste expanded polystyrene foam and its potential application for oil adsorption. J Eng Appl Sci. https://doi.org/10.1186/s44147-021-00030-y

    Article  Google Scholar 

  54. Rahma BH, Zekhnini A, El Hadek M, Hatimi A (2015) Effect of light and oxygen on argan oil stability during a long-term storage. Int J Innov Res Sci Eng. https://doi.org/10.15680/IJIRSET.2015.0402002

    Article  Google Scholar 

  55. Barriuso B, Ansorena D, Poyato C, Astiasarán I (2015) Cholesterol and stigmasterol within a sunflower oil matrix: thermal degradation and oxysterols formation. Steroids. https://doi.org/10.1016/j.steroids.2015.02.009

    Article  PubMed  Google Scholar 

  56. Xu L, Liu X, Ding H-Y, Zhang H, Liu L, Li J-H, Gong H-J, Dong M-Z (2023) Temperature/salt tolerance and oil recovery of xanthan gum solution enhanced by surface-modified nanosilicas. Pet Sci. https://doi.org/10.1016/j.petsci.2022.08.020

    Article  Google Scholar 

  57. Shavandi MA, Haddadian Z, Ismail MHS, Abdullah N, Abidin ZZ (2012) Removal of residual oils from palm oil mill effluent by adsorption on natural zeolite. Water Air Soil Pollut. https://doi.org/10.1007/s11270-012-1169-6

    Article  Google Scholar 

  58. Al-Ghouti MA, Da’ana DA (2020) Guidelines for the use and interpretation of adsorption isotherm models: a review. J Hazard Mater. https://doi.org/10.1016/j.jhazmat.2020.122383

    Article  PubMed  Google Scholar 

  59. Kalam S, Abu-Khamsin SA, Kamal MS, Patil S (2021) Surfactant adsorption isotherms: a review. ACS Omega. https://doi.org/10.1021/acsomega.1c04661

    Article  PubMed  PubMed Central  Google Scholar 

  60. Sarreshtehdar Aslaheh H, Poursattar Marjani A, Gozali Balkanloo P (2023) Pelargonium as a cost-effective additive in bio-composite adsorbent in removing dyes from wastewater: equilibrium, kinetic, and thermodynamic studies. J Polym Environ. https://doi.org/10.1007/s10924-023-02794-1

    Article  Google Scholar 

  61. Zhu X, Tian Y, Li F, Liu Y, Wang X, Hu X (2018) Preparation and application of magnetic superhydrophobic polydivinylbenzene nanofibers for oil adsorption in wastewater. Environ Sci Pollut Res. https://doi.org/10.1007/s11356-018-2385-4

    Article  Google Scholar 

  62. Guo Q, Amendola E, Lavorgna M, Li Z, Feng H, Wu Y, Fei G, Wang Z, Xia H (2022) Robust and recyclable graphene/chitosan composite aerogel microspheres for adsorption of oil pollutants from water. Carbohydr Polym. https://doi.org/10.1016/j.carbpol.2022.119416

    Article  PubMed  Google Scholar 

  63. Plazinski W, Rudzinski W, Plazinska A (2009) Theoretical models of sorption kinetics including a surface reaction mechanism: a review. Adv Colloid Interface Sci. https://doi.org/10.1016/j.cis.2009.07.009

    Article  PubMed  Google Scholar 

  64. Kharbach M, Yu H, Kamal R, Barra I, Marmouzi I, Cherrah Y, Alaoui K, Bouklouze A, Heyden YV (2021) New insights into the argan oil categories characterization: chemical descriptors, FTIR fingerprints, and chemometric approaches. Talanta. https://doi.org/10.1016/j.talanta.2020.122073

    Article  PubMed  Google Scholar 

  65. Rohman A, Che Man YB (2012) Quantification and classification of corn and sunflower oils as adulterants in olive oil using chemometrics and FTIR spectra. Sci World J. https://doi.org/10.1100/2012/250795

    Article  Google Scholar 

  66. Saharan Y, Singh J, Goyat R, Umar A, Algadi H, Ibrahim AA, Kumar R, Baskoutas S (2022) Nanoporous and hydrophobic new chitosan-silica blend aerogels for enhanced oil adsorption capacity. J Clean Prod. https://doi.org/10.1016/j.jclepro.2022.131247

    Article  Google Scholar 

  67. Guiza K, Ben Arfi R, Mougin K et al (2021) Development of novel and ecological keratin/cellulose-based composites for absorption of oils and organic solvents. Environ Sci Pollut Res. https://doi.org/10.1007/s11356-020-11260-7

    Article  Google Scholar 

  68. Zhou LT, Yang G, Yang XX et al (2014) Preparation of regenerated keratin sponge from waste feathers by a simple method and its potential use for oil adsorption. Environ Sci Pollut Res. https://doi.org/10.1007/s11356-014-2513-8

    Article  Google Scholar 

  69. Huang X, Jiang Y, Yu R (2021) Popped rice biochar and superhydrophobic SiO. Silicon. https://doi.org/10.1007/s12633-020-00621-z

    Article  Google Scholar 

Download references

Funding

The authors have not disclosed any funding.

Author information

Authors and Affiliations

Authors

Contributions

IS: conceptualization, supervision, methodology, investigation, writing—review and editing. AB: investigation, methodology. IA: methodology, investigation, writing—original draft. MVD: investigation, methodology. NA: methodology, investigation, formal analysis.

Corresponding author

Correspondence to Narcis Anghel.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher’s Note

Springer nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 2800.8 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Spiridon, I., Bele, A., Apostol, I. et al. Enhancing Natural Polymers-Based Materials Using Montmorillonite: Preparation, Characterization, and Environmental Applications. J Polym Environ (2023). https://doi.org/10.1007/s10924-023-03089-1

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10924-023-03089-1

Keywords

Navigation