Skip to main content
Log in

A New Composite Based on Gellan Gum/Chitosan and Hydroxyapatite Contains Gallium for Removing the Anionic Dyes Remazol Blue and Remazol Red

  • Original Paper
  • Published:
Journal of Polymers and the Environment Aims and scope Submit manuscript

Abstract

The textile industry’s waste is a primary pollutant in aquatic environments. One of the alternatives for pollutant removal is the adsorption process. Among them, polysaccharides have numerous advantages regarding their use: they are non-toxic, abundant in nature, biodegradable, hydrophilic, and have several other properties. The study aimed to investigate new composite materials with morphology based on chitosan and gallium-doped hydroxyapatite (HAp) to remove remazol blue and remazol red dyes in an aqueous solution. In order to have a better understanding of the sorption process, different techniques were used to characterize the composite. Regarding the crystallinity, gallium’s presence did not affect HAp’s crystalline structure. On the other hand, the FT-IR and TG spectra of the composite indicate interactions between the precursor materials in producing the same by shifting the characteristic bands and increasing thermal stability. The morphological analysis by FESEM and Tomography presented essential characteristics for applying the composite in the adsorptive process through the pores formed in the material. Open and interconnected pores were observed with average diameters of 20 μm on the upper and lateral face surface and 95 μm on the inside. A more significant number of pores were observed inside, thus influencing the adsorption. In addition, with the EDS, it was possible to observe the presence of precursor elements for forming the composite. It is concluded that the composite was successful and showed excellent potential for removing Remazol Blue RGB and Remazol Red with adsorption of 341.41 ± 6.82 and 584.89 ± 23.39 mg/g, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Gonçalves JO, da Silva KA, Rios EC et al (2020) Chitosan hydrogel scaffold modified with carbon nanotubes and its application for food dyes removal in single and binary aqueous systems. Int J Biol Macromol. https://doi.org/10.1016/j.ijbiomac.2019.09.074

    Article  PubMed  Google Scholar 

  2. Pauletto PS, Gonçalves JO, Pinto LAA et al (2020) Single and competitive dye adsorption onto chitosan-based hybrid hydrogels using artificial neural network modeling. J Colloid Interface Sci. https://doi.org/10.1016/j.jcis.2019.10.106

    Article  PubMed  Google Scholar 

  3. Pang X, Bouzid M, dos Santos JMN et al (2020) Theoretical study of indigotine blue dye adsorption on CoFe2O4/chitosan magnetic composite via analytical model. Colloids Surf A. https://doi.org/10.1016/j.colsurfa.2020.124467

    Article  Google Scholar 

  4. Semião MA, Haminiuk CWI, Maciel GM (2020) Residual diatomaceous earth as a potential and cost effective biosorbent of the azo textile dye reactive blue 160. J Environ Chem Eng. https://doi.org/10.1016/j.jece.2019.103617

    Article  Google Scholar 

  5. Aksu Z, Dönmez G (2003) A comparative study on the biosorption characteristics of some yeasts for Remazol Blue reactive dye. Chemosphere. https://doi.org/10.1016/S0045-6535(02)00623-9

    Article  PubMed  Google Scholar 

  6. Felista MM, Wanyonyi WC, Ongera G (2020) Adsorption of anionic dye (reactive black 5) using macadamia seed Husks: kinetics and equilibrium studies. Sci Afr. https://doi.org/10.1016/j.sciaf.2020.e00283

    Article  Google Scholar 

  7. Zhou Y, Lu J, Zhou Y, Liu Y (2019) Recent advances for dyes removal using novel adsorbents: a review. Environ Pollut 252:352

    Article  CAS  PubMed  Google Scholar 

  8. Pereira FAR, Sousa KS, Cavalcanti GRS et al (2017) Green biosorbents based on chitosan-montmorillonite beads for anionic dye removal. J Environ Chem Eng. https://doi.org/10.1016/j.jece.2017.06.032

    Article  Google Scholar 

  9. Córdova BM, Venâncio T, Olivera M et al (2021) Xanthation of alginate for heavy metal ions removal. Characterization of xanthate-modified alginates and its metal derivatives. Int J Biol Macromol 169:130–142. https://doi.org/10.1016/j.ijbiomac.2020.12.022

    Article  CAS  PubMed  Google Scholar 

  10. Córdova BM, Jacinto CR, Alarcón H et al (2018) Chemical modification of sodium alginate with thiosemicarbazide for the removal of Pb(II) and Cd(II) from aqueous solutions. Int J Biol Macromol 120:2259–2270. https://doi.org/10.1016/j.ijbiomac.2018.08.095

    Article  CAS  PubMed  Google Scholar 

  11. Córdova BM, Infantas GC, Mayta S et al (2021) Xanthate-modified alginates for the removal of Pb(II) and Ni(II) from aqueous solutions: a brief analysis of alginate xanthation. Int J Biol Macromol 179:557–566. https://doi.org/10.1016/j.ijbiomac.2021.02.190

    Article  CAS  PubMed  Google Scholar 

  12. Córdova BM, Santa Cruz JP, Ocampo TVM et al (2020) Simultaneous adsorption of a ternary mixture of brilliant green, rhodamine B and methyl orange as artificial wastewater onto biochar from cocoa pod husk waste. Quantification of dyes using the derivative spectrophotometry method. New J Chem 44:8303–8316. https://doi.org/10.1039/d0nj00916d

    Article  CAS  Google Scholar 

  13. Sathishkumar P, Arulkumar M, Palvannan T (2012) Utilization of agro-industrial waste Jatropha curcas pods as an activated carbon for the adsorption of reactive dye Remazol Brilliant Blue R (RBBR). J Clean Prod. https://doi.org/10.1016/j.jclepro.2011.09.017

    Article  Google Scholar 

  14. Oliveira JT, Martins L, Picciochi R et al (2010) Gellan gum: a new biomaterial for cartilage tissue engineering applications. J Biomed Mater Res A. https://doi.org/10.1002/jbm.a.32574

    Article  PubMed  PubMed Central  Google Scholar 

  15. Stevens LR, Gilmore KJ, het Wallace GG, (2016) Panhuis M Tissue engineering with gellan gum. Biomater Sci 4:1276

    Article  CAS  PubMed  Google Scholar 

  16. Anandan D, Madhumathi G, Nambiraj NA, Jaiswal AK (2019) Gum based 3D composite scaffolds for bone tissue engineering applications. Carbohydr Polym. https://doi.org/10.1016/j.carbpol.2019.03.020. 214:

    Article  PubMed  Google Scholar 

  17. Chun HJ, Reis RL, Motta A, Khang G (2020) Bioinspired biomaterials. Springer Singapore, Singapore

    Book  Google Scholar 

  18. Wang L, Lyu W, Huang L et al (2022) Utilization of gellan gum as a novel eco-friendly depressant in the flotation separation of fluorite from barite. Min Eng 184:107640. https://doi.org/10.1016/j.mineng.2022.107640

    Article  CAS  Google Scholar 

  19. Esquerdo VM, Cadaval TRS, Dotto GL, Pinto LAA (2014) Chitosan scaffold as an alternative adsorbent for the removal of hazardous food dyes from aqueous solutions. J Colloid Interface Sci. https://doi.org/10.1016/j.jcis.2014.02.028

    Article  PubMed  Google Scholar 

  20. Kueasook R, Rattanachueskul N, Chanlek N et al (2020) Green and facile synthesis of hierarchically porous carbon monoliths via surface self-assembly on sugarcane bagasse scaffold: influence of mesoporosity on efficiency of dye adsorption. Microporous Mesoporous Mater. https://doi.org/10.1016/j.micromeso.2020.110005

    Article  Google Scholar 

  21. Karthika JS, Vishalakshi B (2015) Novel stimuli responsive gellan gum-graft-poly(DMAEMA) hydrogel as adsorbent for anionic dye. Int J Biol Macromol. https://doi.org/10.1016/j.ijbiomac.2015.08.064

    Article  PubMed  Google Scholar 

  22. Al-Shemy MT, Al-Sayed A, Dacrory S (2022) Fabrication of sodium alginate/graphene oxide/nanocrystalline cellulose scaffold for methylene blue adsorption: kinetics and thermodynamics study. Sep Purif Technol. https://doi.org/10.1016/j.seppur.2022.120825

    Article  Google Scholar 

  23. You Y, KeqiQu Huang Z et al (2019) Sodium alginate templated hydroxyapatite/calcium silicate composite adsorbents for efficient dye removal from polluted water. Int J Biol Macromol. https://doi.org/10.1016/j.ijbiomac.2019.09.082

    Article  PubMed  Google Scholar 

  24. Ratnayake JTB, Mucalo M, Dias GJ (2017) Substituted hydroxyapatites for bone regeneration: a review of current trends. J Biomed Mater Res B 105:1285–1299. https://doi.org/10.1002/jbm.b.33651

    Article  CAS  PubMed  Google Scholar 

  25. Pai S, Kini MS, Selvaraj R (2021) A review on adsorptive removal of dyes from wastewater by hydroxyapatite nanocomposites. Environ Sci Pollut Res 28:11835–11849. https://doi.org/10.1007/s11356-019-07319-9

    Article  CAS  Google Scholar 

  26. Pereira Rocha RL, Silva TL, Araujo FP et al (2021) Gallium-containing hydroxyapatite as a promising material for photocatalytic performance. Minerals 11:1347. https://doi.org/10.3390/min11121347

    Article  CAS  ADS  Google Scholar 

  27. Vignesh K, Suganthi A, Rajarajan M, Sakthivadivel R (2012) Visible light assisted photodecolorization of eosin-Y in aqueous solution using hesperidin modified TiO2 nanoparticles. Appl Surf Sci 258:4592–4600. https://doi.org/10.1016/j.apsusc.2012.01.035

    Article  CAS  ADS  Google Scholar 

  28. Borah L, Goswami M, Phukan P (2015) Adsorption of methylene blue and eosin yellow using porous carbon prepared from tea waste: adsorption equilibrium, kinetics and thermodynamics study. J Environ Chem Eng 3:1018–1028. https://doi.org/10.1016/j.jece.2015.02.013

    Article  CAS  Google Scholar 

  29. Tkachenko O, Panteleimonov A, Padalko I et al (2014) Silica functionalized with 1-propyl-3-methylimidazolium chloride as an efficient adsorbent for the removal of eosin yellow and reactive blue 4. Chem Eng J 254:324–332. https://doi.org/10.1016/j.cej.2014.05.117

    Article  CAS  Google Scholar 

  30. Brandão Lima LC, Castro-Silva F, Silva-Filho EC et al (2020) Saponite-anthocyanin pigments: slipping between the sheets. Microporous Mesoporous Mater 300:110148. https://doi.org/10.1016/j.micromeso.2020.110148

    Article  CAS  Google Scholar 

  31. Lima LCB, Silva FC, Silva-Filho EC et al (2020) Saponite-anthocyanin derivatives: the role of organoclays in pigment photostability. Appl Clay Sci. https://doi.org/10.1016/j.clay.2020.105604

    Article  Google Scholar 

  32. de Castro Silva F, Brandão Lima LC, Silva-Filho EC et al (2020) Through alizarin-hectorite pigments: influence of organofunctionalization on fading. Colloids Surf A. https://doi.org/10.1016/j.colsurfa.2019.124323

    Article  Google Scholar 

  33. Sousa JM, Vieira ACC, Costa MP et al (2022) Chitosan grafted with maleic anhydride and ethylenediamine: preparation, characterization, computational study, antibacterial and cytotoxic properties. Mater Chem Phys. https://doi.org/10.1016/j.matchemphys.2022.126301

    Article  Google Scholar 

  34. Vashisth P, Nikhil K, Roy P et al (2016) A novel gellan-PVA nanofibrous scaffold for skin tissue regeneration: fabrication and characterization. Carbohydr Polym. https://doi.org/10.1016/j.carbpol.2015.09.113

    Article  PubMed  Google Scholar 

  35. Santos MVB, Oliveira AL, Osajima JA, Silva-Filho EC (2020) Development of composites scaffolds with calcium and cerium-hydroxyapatite and gellan gum. Ceram Int 46:3811–3817. https://doi.org/10.1016/j.ceramint.2019.10.104

    Article  CAS  Google Scholar 

  36. Furko M, Havasi V, Kónya Z et al (2018) Development and characterization of multi-element doped hydroxyapatite bioceramic coatings on metallic implants for orthopedic applications. Boletin de la Sociedad Espanola de Ceramica y Vidrio 57:55

    Article  CAS  Google Scholar 

  37. Dos Santos MVB, Feitosa GT, Osajima JA et al (2019) Development of a biomaterial made by hydroxyapatite and chlorhexidine for application to the oral cavity. Ceramica. https://doi.org/10.1590/0366-69132019653732441

    Article  Google Scholar 

  38. de Oliveira AC, Sabino RM, Souza PR et al (2020) Chitosan/gellan gum ratio content into blends modulates the scaffolding capacity of hydrogels on bone mesenchymal stem cells. Mater Sci Eng C. https://doi.org/10.1016/j.msec.2019.110258

    Article  Google Scholar 

  39. Genasan K, Mehrali M, Veerappan T et al (2021) Calcium-silicate-incorporated gellan-chitosan induced osteogenic differentiation in mesenchymal stromal cells. Polym (Basel). https://doi.org/10.3390/polym13193211

    Article  Google Scholar 

  40. dos Santos MVB, Rocha LBN, Vieira EG et al (2019) Development of composite scaffolds based on cerium doped-hydroxyapatite and natural gums-biological and mechanical properties. Materials. https://doi.org/10.3390/ma12152389

    Article  PubMed  PubMed Central  Google Scholar 

  41. Lima F, Melo WG, de Fátima Braga M et al (2021) Chitosan-based hydrogel for treatment of temporomandibular joint arthritis. Polimeros. https://doi.org/10.1590/0104-1428.20210026

    Article  Google Scholar 

  42. Barbosa HFG, Attjioui M, Leitão A et al (2019) Characterization, solubility and biological activity of amphihilic biopolymeric Schiff bases synthesized using chitosans. Carbohydr Polym. https://doi.org/10.1016/j.carbpol.2019.05.037

    Article  PubMed  Google Scholar 

  43. Kamer DDA, Gumus T, Palabiyik I et al (2022) The fermentation-based production of gellan from rice bran and the evaluation of various qualitative properties of gum. Int J Biol Macromol. https://doi.org/10.1016/j.ijbiomac.2022.03.168

    Article  PubMed  Google Scholar 

  44. Lee S, Choi JH, Park A et al (2020) Advanced gellan gum-based glycol chitosan hydrogel for cartilage tissue engineering biomaterial. Int J Biol Macromol. https://doi.org/10.1016/j.ijbiomac.2020.04.135

    Article  PubMed  PubMed Central  Google Scholar 

  45. Pereira FS, Da Silva Agostini DL, Job AE, González ERP (2013) Thermal studies of chitin-chitosan derivatives. J Therm Anal Calorim. https://doi.org/10.1007/s10973-012-2835-z. 114:

    Article  Google Scholar 

  46. Yalman V, Çelik E, Arslan Ö et al (2020) A study on bone tissue engineering: injectable chitosan-g-stearic acid putty. Technol Health Care. https://doi.org/10.3233/THC-191775

    Article  PubMed  Google Scholar 

  47. Karthika JS, Vishalakshi B, Naik J (2016) Gellan gum-graft-polyaniline-an electrical conducting biopolymer. Int J Biol Macromol. https://doi.org/10.1016/j.ijbiomac.2015.10.061

    Article  PubMed  Google Scholar 

  48. Rajesh R, Ravichandran YD, Jeevan Kumar Reddy M et al (2016) Development of functionalized multi-walled carbon nanotube-based polysaccharide-hydroxyapatite scaffolds for bone tissue engineering. RSC Adv. https://doi.org/10.1039/c6ra16709h

    Article  Google Scholar 

  49. Li A, Xu H, Yu P et al (2020) Injectable hydrogels based on gellan gum promotes in situ mineralization and potential osteogenesis. Eur Polym J 141:110091. https://doi.org/10.1016/J.EURPOLYMJ.2020.110091

    Article  CAS  Google Scholar 

  50. Piault P, King A, Henry L et al (2023) A thresholding based iterative reconstruction method for limited-angle tomography data. Tomography Mater Struct 2:100008. https://doi.org/10.1016/j.tmater.2023.100008

    Article  Google Scholar 

  51. Carvalho IC, Medeiros Borsagli FGL, Mansur AAP et al (2021) 3D sponges of chemically functionalized chitosan for potential environmental pollution remediation: biosorbents for anionic dye adsorption and ‘antibiotic-free’ antibacterial activity. Environ Technol. https://doi.org/10.1080/09593330.2019.1689302

    Article  Google Scholar 

  52. Inphonlek S, Niamsiri N, Sunintaboon P, Sirisinha C (2020) Chitosan/xanthan gum porous scaffolds incorporated with in-situ-formed poly(lactic acid) particles: their fabrication and ability to adsorb anionic compounds. Colloids Surf A. https://doi.org/10.1016/j.colsurfa.2020.125263. 603:

    Article  Google Scholar 

  53. Liu S, Ge H, Cheng S, Zou Y (2020) Green synthesis of magnetic 3D bio-adsorbent by corn straw core and chitosan for methylene blue removal. Environ Technol. https://doi.org/10.1080/09593330.2018.1556345

    Article  Google Scholar 

  54. Borsagli FGLM, Ciminelli VST, Ladeira CL et al (2019) Multi-functional eco-friendly 3D scaffolds based on N-acyl thiolated chitosan for potential adsorption of methyl orange and antibacterial activity against Pseudomonas aeruginosa. J Environ Chem Eng. https://doi.org/10.1016/j.jece.2019.103286

    Article  Google Scholar 

  55. Zhuang G, Jaber M, Rodrigues F et al (2019) A new durable pigment with hydrophobic surface based on natural nanotubes and indigo: interactions and stability. J Colloid Interface Sci. https://doi.org/10.1016/j.jcis.2019.04.072

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

The authors want to thank their institutions, UFPI, UFPB, IFPI Institutes, and X-ray Laboratory of the Centro de Investigación Tecnología e Innovación de la Universidad de Sevilla (CITIUS).

Funding

This research was funded by CAPES, CNPq, and FAPEPI for all financial support. Also the University of Seville through the VII Plan Propio de Investigación.

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization: FFC; AMSS; ISL; ASS; Formal analysis: AMSS; ISL; Investigation: FFC; AMSS; ISL; Methodology: AISM; ISL; ASS; Figures: AISM; LCBL; SMC; Project administration: ECS-F; Resources: FFC; AMSS; ASS; RRPG; Supervision: ECS-F; ANSB; Validation: LCBL.; JAO; MDMOC; SMC ; Visualization: RRPG; SMC; MDMOC; ECS-F; Roles/writing—original draft: FFC; AISM; JAO; ANSB; Writing—review & editing: RRPG; JAO; MDMOC; ECS-F.

Corresponding author

Correspondence to Edson C. Silva-Filho.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary Material 1 (AVI 18624 kb)

Supplementary Material 2 (AVI 25437 kb)

Supplementary Material 3 (AVI 20752 kb)

Supplementary Material 4 (AVI 22598 kb)

Supplementary Material 5 (AVI 24693 kb)

Supplementary Material 6 (AVI 19121 kb)

Supplementary Material 7 (DOCX 477 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Alves, F.F.C., Morais, A.Í.S., Lima, L.C.B. et al. A New Composite Based on Gellan Gum/Chitosan and Hydroxyapatite Contains Gallium for Removing the Anionic Dyes Remazol Blue and Remazol Red. J Polym Environ 32, 560–572 (2024). https://doi.org/10.1007/s10924-023-02993-w

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10924-023-02993-w

Keywords

Navigation