Skip to main content
Log in

A Comparative Study of the Performance of Polyaluminum Chloride-Sodium Alginate and Polyaluminum Chloride-Chitosan Composite Coagulants in Dam Water Treatment

  • Original Paper
  • Published:
Journal of Polymers and the Environment Aims and scope Submit manuscript

Abstract

Polyaluminum chloride (PAC)/natural polyelectrolyte composite coagulants have received considerable attention recently due to their exceptional properties in drinking water treatment. However, the criteria for selecting polyelectrolytes grafted into the PAC to improve coagulation performance are not yet well defined. For this purpose, we have compared the potential of composite coagulant PAC-SA (sodium alginate (anionic polyelectrolyte)) with PAC-CTS (chitosan (cationic polyelectrolyte)) on treatment dam water. The impact of the nature and ratio of polyelectrolytes used was examined as a function of the distribution of aluminum forms in the composite coagulant. The intramolecular interaction between PAC and polyelectrolytes was visualized by FTIR analysis and studied by density functional theory (DFT). The coagulation performance showed that the polyelectrolyte viscosity and aluminum forms distribution significantly affect the removal of turbidity and oxidizable matter. PAC-SA showed a higher removal efficiency of colloidal suspension than PAC-CTS due to alginate’s high viscosity, which improves coagulation via bridging and interparticle entrapment phenomena. The present work highlighted the effect of polyelectrolyte viscosity and aluminum speciation on improving coagulation performance to define promising criteria for developing new composite coagulants.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Aboubaraka AE, Aboelfetoh EF, Ebeid EZM (2017) Coagulation effectiveness of graphene oxide for the removal of turbidity from raw surface water. Chemosphere 181:738–746. https://doi.org/10.1016/j.chemosphere.2017.04.137

    Article  CAS  PubMed  Google Scholar 

  2. Sillanpää M, Ncibi MC, Matilainen A (2018) Advanced oxidation processes for the removal of natural organic matter from drinking water sources: a comprehensive review. J Environ Manage 208:56–76

    Article  PubMed  Google Scholar 

  3. Zhao S, Sun Q, Gu Y et al (2020) Enteromorpha prolifera polysaccharide based coagulant aid for humic acids removal and ultrafiltration membrane fouling control. Int J Biol Macromol 152:576–583. https://doi.org/10.1016/j.ijbiomac.2020.02.273

    Article  CAS  PubMed  Google Scholar 

  4. Tang Y, Hu X, Cai J et al (2020) An enhanced coagulation using a starch-based coagulant assisted by polysilicic acid in treating simulated and real surface water. Chemosphere 259:127464. https://doi.org/10.1016/j.chemosphere.2020.127464

    Article  CAS  PubMed  Google Scholar 

  5. Wu Y, Wang D, Liu X et al (2019) Effect of poly aluminum chloride on dark fermentative hydrogen accumulation from waste activated sludge. Water Res 153:217–228. https://doi.org/10.1016/j.watres.2019.01.016

    Article  CAS  PubMed  Google Scholar 

  6. Kong Y, Ma Y, Ding L et al (2021) Coagulation behaviors of aluminum salts towards humic acid: detailed analysis of aluminum speciation and transformation. Sep Purif Technol 259:118137. https://doi.org/10.1016/j.seppur.2020.118137

    Article  CAS  Google Scholar 

  7. Chen Y, Matsui Y, Sato T et al (2023) Overlooked effect of ordinary inorganic ions on polyaluminum-chloride coagulation treatment. Water Res 235:119909. https://doi.org/10.1016/J.WATRES.2023.119909

    Article  CAS  PubMed  Google Scholar 

  8. Dela Justina M, Rodrigues Bagnolin Muniz B, Mattge Bröring M et al (2018) Using vegetable tannin and polyaluminium chloride as coagulants for dairy wastewater treatment: a comparative study. J Water Process Eng 25:173–181. https://doi.org/10.1016/j.jwpe.2018.08.001

    Article  Google Scholar 

  9. Guo K, Gao B, Tian X et al (2019) Synthesis of polyaluminium chloride/papermaking sludge-based organic polymer composites for removal of disperse yellow and reactive blue by flocculation. Chemosphere 231:337–348. https://doi.org/10.1016/j.chemosphere.2019.05.138

    Article  CAS  PubMed  Google Scholar 

  10. Song J, Jin P, Jin X, Wang XC (2019) Synergistic effects of various in situ hydrolyzed aluminum species for the removal of humic acid. Water Res 148:106–114. https://doi.org/10.1016/j.watres.2018.10.039

    Article  CAS  PubMed  Google Scholar 

  11. He W, Xie Z, Lu W et al (2019) Comparative analysis on floc growth behaviors during ballasted flocculation by using aluminum sulphate (AS) and polyaluminum chloride (PACl) as coagulants. Sep Purif Technol 213:176–185. https://doi.org/10.1016/j.seppur.2018.12.043

    Article  CAS  Google Scholar 

  12. Zhang Z, Jing R, He S et al (2018) Coagulation of low temperature and low turbidity water: adjusting basicity of polyaluminum chloride (PAC) and using chitosan as coagulant aid. Sep Purif Technol 206:131–139. https://doi.org/10.1016/j.seppur.2018.05.051

    Article  CAS  Google Scholar 

  13. Wang X, Tang X, Feng P et al (2017) A novel preparation method of polyaluminum chloride/polyacrylamide composite coagulant: composition and characteristic. J Appl Polym Sci. https://doi.org/10.1002/app.44500

    Article  Google Scholar 

  14. Tolkou AK, Zouboulis AI (2020) Application of composite pre-polymerized coagulants for the treatment of high-strength industrial wastewaters. Water 12:1258. https://doi.org/10.3390/w12051258

    Article  CAS  Google Scholar 

  15. Zhou L, Zhou H, Yang X (2019) Preparation and performance of a novel starch-based inorganic/organic composite coagulant for textile wastewater treatment. Sep Purif Technol 210:93–99. https://doi.org/10.1016/j.seppur.2018.07.089

    Article  CAS  Google Scholar 

  16. El Foulani A-A, Ounas O, Laabi A et al (2020) Removal of dissolved and colloidal matter from surface waters by composite flocculant aluminum salt-sodium alginate. Desalin Water Treat 26407:1–7. https://doi.org/10.5004/dwt.2020.26407

    Article  CAS  Google Scholar 

  17. Zhao Y, Chen Y, Zhao J et al (2017) Preparation of SA-g-(PAA-co-PDMC) polyampholytic superabsorbent polymer and its application to the anionic dye adsorption removal from effluents. Sep Purif Technol 188:329–340. https://doi.org/10.1016/j.seppur.2017.07.044

    Article  CAS  Google Scholar 

  18. Ng M, Liana AE, Liu S et al (2012) Preparation and characterisation of new-polyaluminum chloride-chitosan composite coagulant. Water Res 46:4614–4620. https://doi.org/10.1016/j.watres.2012.06.021

    Article  CAS  PubMed  Google Scholar 

  19. Olad A, Pourkhiyabi M, Gharekhani H, Doustdar F (2018) Semi-IPN superabsorbent nanocomposite based on sodium alginate and montmorillonite: reaction parameters and swelling characteristics. Carbohydr Polym 190:295–306. https://doi.org/10.1016/j.carbpol.2018.02.088

    Article  CAS  PubMed  Google Scholar 

  20. Yu S, Xu X, Feng J et al (2019) Chitosan and chitosan coating nanoparticles for the treatment of brain disease. Int J Pharm 560:282–293. https://doi.org/10.1016/j.ijpharm.2019.02.012

    Article  CAS  PubMed  Google Scholar 

  21. Ali A, Ahmed S (2018) A review on chitosan and its nanocomposites in drug delivery. Int J Biol Macromol 109:273–286

    Article  CAS  PubMed  Google Scholar 

  22. García OGZ, Oropeza-Guzmán MT, Argüelles Monal WM, López-Maldonado EA (2019) Design and mechanism of action of multifunctional BPE’s with high performance in the separation of hazardous metal ions from polluted water Part I: chitosan-poly(N-vinylcaprolactam) and its derivatives. Chem Eng J 359:840–851. https://doi.org/10.1016/J.CEJ.2018.11.134

    Article  Google Scholar 

  23. Castro-Riquelme CL, López-Maldonado EA, Ochoa-Terán A et al (2023) Chitosan-carbamoylcarboxylic acid grafted polymers for removal of metal ions in wastewater. Chem Eng J 456:141034. https://doi.org/10.1016/J.CEJ.2022.141034

    Article  CAS  Google Scholar 

  24. Jabin S, Kapoor JK, Jadoun S et al (2023) Synthesis and characterization of polyamine-based polyelectrolytes for wastewater treatment in the sugar industry. J Mol Struct 1275:134573. https://doi.org/10.1016/J.MOLSTRUC.2022.134573

    Article  CAS  Google Scholar 

  25. Al-Risheq DIM, Shaikh SMR, Nasser MS et al (2022) Enhancing the flocculation of stable bentonite suspension using hybrid system of polyelectrolytes and NADES. Colloids Surfaces A Physicochem Eng Asp 638:128305. https://doi.org/10.1016/J.COLSURFA.2022.128305

    Article  CAS  Google Scholar 

  26. Tian C, Feng C, Wang Q (2021) The identification of Al nanoclusters by electrospray ionization mass spectrometry (ESI-MS). Sci Total Environ 754:142154. https://doi.org/10.1016/J.SCITOTENV.2020.142154

    Article  CAS  PubMed  Google Scholar 

  27. Zakaria ZA, Ahmad WA (2020) Organic and inorganic matter removal using high polymeric Al13 containing polyaluminium chloride. Water Air Soil Pollut 231:310. https://doi.org/10.1007/s11270-020-04706-8

    Article  CAS  Google Scholar 

  28. Dimakis N, Vadodaria O, Ruiz K, Gupta S (2021) Molybdenum disulfide monolayer electronic structure information as explored using density functional theory and quantum theory of atoms in molecules. Appl Surf Sci 555:149545. https://doi.org/10.1016/J.APSUSC.2021.149545

    Article  CAS  Google Scholar 

  29. Parr RG, Yang W (2002) Density functional approach to the frontier-electron theory of chemical reactivity. J Am Chem Soc 106:4049–4050. https://doi.org/10.1021/JA00326A036

    Article  Google Scholar 

  30. M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, J. A.ontgomery, Jr., T. Vreven, K. N. Kudin, J. C. Burant, J. M. Millam, S. S. Iyengar, J. Tomasi, V. Barone, B. Mennucci, M. Cossi, G. Scalmani, N. Rega, G. A. Peter G 09 (2009) Revision A.02, Gaussian, Inc., Wallingford, CT.

  31. Parr RG, Szentpály LV, Liu S (1999) Electrophilicity index. J Am Chem Soc 121:1922–1924. https://doi.org/10.1021/ja983494x

    Article  CAS  Google Scholar 

  32. Domingo LR, Chamorro E, Pérez P (2008) Understanding the reactivity of captodative ethylenes in polar cycloaddition reactions .A theoretical study. J Org Chem 73:4615–4624. https://doi.org/10.1021/jo800572a

    Article  CAS  PubMed  Google Scholar 

  33. Gaussian09 (2009) Gaussian09. ci.nii.ac.jp

  34. Xia X, Lan S, Li X et al (2018) Characterization and coagulation-flocculation performance of a composite flocculant in high-turbidity drinking water treatment. Chemosphere 206:701–708. https://doi.org/10.1016/j.chemosphere.2018.04.159

    Article  CAS  PubMed  Google Scholar 

  35. Chen Z, Luan Z, Fan J et al (2007) Effect of thermal treatment on the formation and transformation of Keggin Al13 and Al30 species in hydrolytic polymeric aluminum solutions. Colloids Surfaces A Physicochem Eng Asp 292:110–118. https://doi.org/10.1016/j.colsurfa.2006.06.005

    Article  CAS  Google Scholar 

  36. Chen Z, Luan Z, Jia Z, Li X (2009) On the acid-base stability of Keggin Al13 and Al30 polymers in polyaluminum coagulants. J Mater Sci 44:3098–3111. https://doi.org/10.1007/s10853-009-3412-0

    Article  CAS  Google Scholar 

  37. Liu Z, Duan X, Zhan P et al (2017) (2017) Coagulation performance and microstructural morphology of a novel magnetic composite coagulant for pre-treating landfill leachate. Int J Environ Sci Technol 1411(14):2507–2518. https://doi.org/10.1007/S13762-017-1338-7

    Article  Google Scholar 

  38. Choudhary AK, Kumar S, Sharma C (2015) Removal of chloro-organics and color from pulp and paper mill wastewater by polyaluminium chloride as coagulant. New pub Balaban 53:697–708. https://doi.org/10.1080/19443994.2013.848670

    Article  CAS  Google Scholar 

  39. Hou L, Wu P (2019) Exploring the hydrogen-bond structures in sodium alginate through two-dimensional correlation infrared spectroscopy. Carbohydr Polym 205:420–426. https://doi.org/10.1016/J.CARBPOL.2018.10.091

    Article  CAS  PubMed  Google Scholar 

  40. Larosa C, Salerno M, de Lima JS et al (2018) Characterisation of bare and tannase-loaded calcium alginate beads by microscopic, thermogravimetric, FTIR and XRD analyses. Int J Biol Macromol 115:900–906. https://doi.org/10.1016/j.ijbiomac.2018.04.138

    Article  CAS  PubMed  Google Scholar 

  41. El Foulani A-A, Hammoudan I, Byoud F et al (2022) Synthesis, characterization, and evaluation of new composites coagulants polyaluminum chloride-sodium alginate. Water Air Soil Pollut 233:1–12. https://doi.org/10.1007/S11270-022-05786-4/METRICS

    Article  Google Scholar 

  42. Papageorgiou SK, Kouvelos EP, Favvas EP et al (2010) Metal-carboxylate interactions in metal-alginate complexes studied with FTIR spectroscopy. Carbohydr Res 345:469–473. https://doi.org/10.1016/j.carres.2009.12.010

    Article  CAS  PubMed  Google Scholar 

  43. Srinivasan H, Kanayairam V, Ravichandran R (2018) Chitin and chitosan preparation from shrimp shells Penaeus monodon and its human ovarian cancer cell line, PA-1. Int J Biol Macromol 107:662–667. https://doi.org/10.1016/J.IJBIOMAC.2017.09.035

    Article  CAS  PubMed  Google Scholar 

  44. Menazea AA, Eid MM, Ahmed MK (2020) Synthesis, characterization, and evaluation of antimicrobial activity of novel chitosan/tigecycline composite. Int J Biol Macromol 147:194–199. https://doi.org/10.1016/J.IJBIOMAC.2020.01.041

    Article  CAS  PubMed  Google Scholar 

  45. Rong C, Wang B, Zhao D, Liu S (2020) Information-theoretic approach in density functional theory and its recent applications to chemical problems. Wiley Interdiscip Rev Comput Mol Sci 10:e1461. https://doi.org/10.1002/WCMS.1461

    Article  CAS  Google Scholar 

  46. Marahatta AB (2021) Chemical energetics and atomic charges distribution of variably sized hydrated sulfate clusters in the light of density functional theory. Int J Progress Sci Technol 25:595. https://doi.org/10.52155/ijpsat.v25.1.2690

    Article  Google Scholar 

  47. Zidane F, Drogui P, Lekhlif B, Bensaid J (2008) Decolourization of dye-containing effluent using mineral coagulants produced by electrocoagulation. J Hazard Mater 155:153–163. https://doi.org/10.1016/j.jhazmat.2007.11.041

    Article  CAS  PubMed  Google Scholar 

  48. Chen Y, Wu Y, Wang D et al (2018) Understanding the mechanisms of how poly aluminium chloride inhibits short-chain fatty acids production from anaerobic fermentation of waste activated sludge. Chem Eng J 334:1351–1360. https://doi.org/10.1016/J.CEJ.2017.11.064

    Article  CAS  Google Scholar 

  49. El Foulani A-A, Jamal-eddine J, Lekhlif B (2022) Study of aluminium speciation in the coagulant composite of polyaluminium chloride-chitosan for the optimization of drinking water treatment. Process Saf Environ Prot 158:400–408. https://doi.org/10.1016/J.PSEP.2021.12.028

    Article  Google Scholar 

  50. Singh RP, Nayak BR, Biswal DR et al (2003) Biobased polymeric flocculants for industrial effluent treatment. Mater Res Innov 7:331–340. https://doi.org/10.1007/s10019-003-0273-z

    Article  CAS  Google Scholar 

Download references

Funding

The authors have not disclosed any funding.

Author information

Authors and Affiliations

Authors

Contributions

AAAEF : Conceptualization, Methodology , experimental manipulations writing—original draft, writing—review and editing, and visualization. BOO : review and editing, and visualization. CMT : Validation,investigation, writing—review and editing, and visualization. CMC : Validation,investigation, writing—review and editing, and visualization.

Corresponding author

Correspondence to Abdellah-Anouar. El Foulani.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

El Foulani, AA., Ounas, O., Tahiri, M. et al. A Comparative Study of the Performance of Polyaluminum Chloride-Sodium Alginate and Polyaluminum Chloride-Chitosan Composite Coagulants in Dam Water Treatment. J Polym Environ 31, 4909–4918 (2023). https://doi.org/10.1007/s10924-023-02930-x

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10924-023-02930-x

Keywords

Navigation