Skip to main content
Log in

Development and Characterisation of Poly(butylene adipate-co-terephthalate)- Silane Modified Cellulose Nanocrystals Composite Materials and Films

  • Original Paper
  • Published:
Journal of Polymers and the Environment Aims and scope Submit manuscript

Abstract

In the pursuit of a sustainable and pollution free environment, the need for bioplastic alternatives that satisfy many of the performance demands of persistent petroleum-derived plastics is paramount. Biopolymer films reinforced with nanostructures have become an interesting area of research. Poly(butylene adipate-co-terephthalate) (PBAT) is a synthetic polymer capable of biodegrading at ambient temperature. The polar nature of cellulose nanocrystals (CNCs) used as additive in PBAT matrix makes its dispersion challenging. In this work silylation was achieved by partial substitution of surface hydroxyl groups of nanocellulose with hydrophobic silicone moieties. The surface of nanocellulose was initially modified by 5 wt.% of triethoxyvinylsilane (TEVS) or trimethoxyphenylsilane (TMPS) and melt blended into the PBAT matrix. Phenyl modified nanocellulose used as additive in PBAT matrix achieved uniform dispersion. The phenyl silane modified CNCs based composite film had 12% higher tensile strength and −58% higher modulus of elasticity than pristine PBAT films. The phenyl silane modified CNCs substantially reduced the permeability of the composite films against both water vapour and oxygen. Food packaging applications may benefit from this material as it could meet many of the performance requirements in terms of morphological, mechanical, thermal and barrier properties.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Cazón P, Vázquez M, Velazquez G (2018) Cellulose-glycerol-polyvinyl alcohol composite films for food packaging: evaluation of water adsorption, mechanical properties, light-barrier properties and transparency. Carbohydr Polym. https://doi.org/10.1016/j.carbpol.2018.04.120

    Article  PubMed  Google Scholar 

  2. Barbosa RF, Souza AG, Rosa DS (2020) Acetylated cellulose nanostructures as reinforcement materials for PBAT nanocomposites. Polym Compos. https://doi.org/10.1002/pc.25580

    Article  Google Scholar 

  3. Venkatesan R, Rajeswari N (2017) ZnO/PBAT nanocomposite films: investigation on the mechanical and biological activity for food packaging. Polym Adv Technol. https://doi.org/10.1002/pat.3847

    Article  Google Scholar 

  4. Venkatesan R, Rajeswari N (2019) Preparation, mechanical and antimicrobial properties of SiO2/poly (butylene adipate-co-terephthalate) films for active food packaging. Silicon. https://doi.org/10.1007/s12633-015-9402-8

    Article  Google Scholar 

  5. Ding K, Wei N, Zhou Y, Wang Y, Wu D, Liu H, Yu H, Zhou C, Chen J, Chen C (2016) Viscoelastic behavior and model simulations of poly (butylene adipate-co-terephthalate) biocomposites with carbon nanotubes: hierarchical structures and relaxation. J. Compos. Mater. https://doi.org/10.1177/0021998315596592.

    Article  Google Scholar 

  6. Chengwei Z, Yu Z, Zhihua W (2013) Study on degradation properties of filled PBAT composite. Plast. Sci. Technol 9:1–7

    Google Scholar 

  7. Scaffaro R, Maio A, Gulino EF, Morreale M, La Mantia FP (2020) The effects of nanoclay on the mechanical properties, carvacrol release and degradation of a PLA/PBAT blend. Materials. https://doi.org/10.3390/ma13040983

    Article  PubMed  PubMed Central  Google Scholar 

  8. Falcão GA, Almeida TG, Bardi MA, Carvalho LH, Canedo EL (2019) PBAT/organoclay composite films—part 2: effect of UV aging on permeability, mechanical properties and biodegradation. Polym. Bull. https://doi.org/10.1007/s00289-018-2385-z.

    Article  Google Scholar 

  9. Venkatesan R, Rajeswari N (2017) TiO2 nanoparticles/poly (butylene adipate-co‐terephthalate) bionanocomposite films for packaging applications. Polym. Adv. Technol. https://doi.org/10.1002/pat.4042.

    Article  Google Scholar 

  10. Venkatesan R, Alagumalai K, Kim SC (2023) Preparation and performance of biodegradable poly (butylene adipate-co-terephthalate) composites Reinforced with Novel AgSnO2 microparticles for application in food packaging. Polymers. https://doi.org/10.3390/polym15030554

    Article  PubMed  PubMed Central  Google Scholar 

  11. Zhong B, Tang Y, Chen Y, Luo Y, Jia Z, Jia D (2023) Improvement of UV aging resistance of PBAT composites with silica-immobilized UV absorber prepared by a facile method. Polym. Degrad. Stab. https://doi.org/10.1016/j.polymdegradstab.2023.110337.

    Article  Google Scholar 

  12. Xiong SJ, Pang B, Zhou SJ, Li MK, Yang S, Wang YY, Shi Q, Wang SF, Yuan TQ, Sun RC (2020) Economically competitive biodegradable PBAT/lignin composites: Effect of lignin methylation and compatibilizer. ACS Sustain. Chem. Eng. https://doi.org/10.1021/acssuschemeng.0c00789.

    Article  Google Scholar 

  13. Liu Y, Liu S, Liu Z, Lei Y, Jiang S, Zhang K, Yan W, Qin J, He M, Qin S, Yu J (2021) Enhanced mechanical and biodegradable properties of PBAT/lignin composites via silane grafting and reactive extrusion. Compos. B. Eng. https://doi.org/10.1016/j.compositesb.2021.108980.

    Article  Google Scholar 

  14. Kargarzadeh H, Galeski A, Pawlak A (2020) PBAT green composites: Effects of kraft lignin particles on the morphological, thermal, crystalline, macro and micromechanical properties. Polymer. https://doi.org/10.1016/j.polymer.2020.122748

    Article  Google Scholar 

  15. Botta L, Titone V, Teresi R, Scarlata MC, Re GL, La Mantia FP, Lopresti F (2022) Biocomposite PBAT/lignin blown films with enhanced photo-stability. Int. J. Biol. Macromol. https://doi.org/10.1016/j.ijbiomac.2022.07.048.

    Article  PubMed  Google Scholar 

  16. Shorey R, Mekonnen TH (2022) Sustainable paper coating with enhanced barrier properties based on esterified lignin and PBAT blend. Int. J. Biol. Macromol. https://doi.org/10.1016/j.ijbiomac.2022.04.037.

    Article  PubMed  Google Scholar 

  17. Xie L, Huang J, Xu H, Feng C, Na H, Liu F, Xue L, Zhu J (2023). Effect of large sized reed fillers on properties and degradability of PBAT composites. Polym. Compos. https://doi.org/10.1002/pc.27202.

    Article  Google Scholar 

  18. Gupta A, Chudasama B, Chang BP Mekonnen T (2021) Robust and sustainable PBAT–Hemp residue biocomposites: reactive extrusion compatibilization and fabrication. Compos. Sci. Technol. https://doi.org/10.1016/j.compscitech.2021.109014.

    Article  Google Scholar 

  19. Conzatti L, Brunengo E, Utzeri R, Castellano M, Hodge P, Stagnaro P (2018) Macrocyclic oligomers as compatibilizing agent for hemp fibres/biodegradable polyester eco-composites. Polymer. https://doi.org/10.1016/j.polymer.2018.05.053.

    Article  Google Scholar 

  20. Li Z, Wang C, Liu T, Ye X, He M, Zhao L, Li H, Ren J, Algadi H, Li Y, Jiang Q (2023) Interfacial interaction enhancement between biodegradable poly (butylene adipate-co-terephthalate) and microcrystalline cellulose based on covalent bond for improving puncture, tearing, and enzymatic degradation properties. Adv. Compos. Hybrid. Mater. https://doi.org/10.1007/s42114-023-00638-z.

    Article  Google Scholar 

  21. Dhali K, Ghasemlou M, Daver F, Cass P, Adhikari B (2021) A review of nanocellulose as a new material towards environmental sustainability. Sci. Total Environ. https://doi.org/10.1016/j.scitotenv.2021.145871.

    Article  PubMed  Google Scholar 

  22. Klemm D, Kramer F, Moritz S, Lindström T, Ankerfors M, Gray D, Dorris A (2011) Nanocelluloses: a new family of nature-based materials. Angew. Chem. Int. Ed. https://doi.org/10.1002/anie.201001273.

    Article  Google Scholar 

  23. Ghasemlou M, Daver F, Ivanova EP, Habibi Y, Adhikari B (2021) Surface modifications of nanocellulose: from synthesis to high-performance nanocomposites. Prog. Polym. Sci. https://doi.org/10.1016/j.progpolymsci.2021.101418.

    Article  Google Scholar 

  24. Mondal S (2018) Review on nanocellulose polymer nanocomposites. Polym. Plast. Technol. Eng. https://doi.org/10.1080/03602559.2017.1381253.

    Article  Google Scholar 

  25. Zhang X, Ma P, Zhang Y (2016) Structure and properties of surface-acetylated cellulose nanocrystal/poly (butylene adipate-co-terephthalate) composites. Polym. Bull. https://doi.org/10.1007/s00289-015-1594-y.

    Article  Google Scholar 

  26. Morelli CL, Belgacem MN, Branciforti MC, Bretas RE, Crisci A, Bras J (2016) Supramolecular aromatic interactions to enhance biodegradable film properties through incorporation of functionalized cellulose nanocrystals. Compos. Part A Appl. Sci. https://doi.org/10.1016/j.compositesa.2015.10.038.

    Article  Google Scholar 

  27. Morelli CL, Belgacem N, Bretas RE, Bras J (2016) Melt extruded nanocomposites of polybutylene adipate-co‐terephthalate (PBAT) with phenylbutyl isocyanate modified cellulose nanocrystals. J. Appl. Polym. Sci. https://doi.org/10.1002/app.43678.

    Article  Google Scholar 

  28. Pinheiro IF, Ferreira FV, Souza DHS, Gouveia RF, Lona LMF, Morales AR, Mei LHI (2017) Mechanical, rheological and degradation properties of PBAT nanocomposites reinforced by functionalized cellulose nanocrystals. Eur. Polym. J. https://doi.org/10.1016/j.eurpolymj.2017.10.026.

    Article  Google Scholar 

  29. Lai L, Wang S, Li J, Liu P, Wu L, Wu H, Xu J, Severtson SJ, Wang WJ (2020) Stiffening, strengthening, and toughening of biodegradable poly (butylene adipate-co-terephthalate) with a low nanoinclusion usage. Carbohydr. Polym. https://doi.org/10.1016/j.carbpol.2020.116687.

    Article  PubMed  Google Scholar 

  30. Dhali K, Daver F, Cass P, Adhikari B (2022) Surface modification of the cellulose nanocrystals through vinyl silane grafting. Int. J. Biol. Macromol. https://doi.org/10.1016/j.ijbiomac.2022.01.079.

    Article  PubMed  Google Scholar 

  31. Mariano M, El Kissi N, Dufresne A (2016) Structural reorganization of CNC in injection-molded CNC/PBAT materials under thermal annealing. Langmuir. https://doi.org/10.1021/acs.langmuir.6b03220.

    Article  PubMed  Google Scholar 

  32. Li F, Xu X, Hao Q, Li Q, Yu J, Cao A (2006) Effects of comonomer sequential structure on thermal and crystallization behaviors of biodegradable poly (butylene succinate-co‐butylene terephthalate) s. J. Polym. Sci. B Polym. Phys. https://doi.org/10.1002/polb.20797.

    Article  Google Scholar 

  33. Makowski T (2020) Hydrophobization of cotton fabric with silanes with different substituents. Cellulose. https://doi.org/10.1007/s10570-019-02776-4.

    Article  Google Scholar 

  34. Raditoiu A, Raditoiu V, Amariutei V, Ghiurea M, Nicolae CA, Gabor R, Fierascu RC, Wagner LE (2012) Coloured silica hybrids for functionalizing cellulose materials. J. Optoelectron. Adv. Mater. 14: 846.

    CAS  Google Scholar 

  35. Li YH, Buriak JM (2006) Dehydrogenative silane coupling on silicon surfaces via early transition metal catalysis. Inorg. Chem. https://doi.org/10.1021/ic051431r.

    Article  PubMed  PubMed Central  Google Scholar 

  36. Beaumont M, Bacher M, Opietnik M, Gindl-Altmutter W, Potthast A, Rosenau T (2018) A general aqueous silanization protocol to introduce vinyl, mercapto or azido functionalities onto cellulose fibers and nanocelluloses. Molecules. https://doi.org/10.3390/molecules23061427

    Article  PubMed  PubMed Central  Google Scholar 

  37. Gwon JG, Lee SY, Doh GH, Kim JH (2010) Characterization of chemically modified wood fibers using FTIR spectroscopy for biocomposites. J. Appl. Polym. Sci. https://doi.org/10.1002/app.31746.

    Article  Google Scholar 

  38. Fernandes SC, Sadocco P, Alonso-Varona A, Palomares T, Eceiza A, Silvestre AJ, Mondragon I, Freire CS (2013) Bioinspired antimicrobial and biocompatible bacterial cellulose membranes obtained by surface functionalization with aminoalkyl groups. ACS Appl. Mater. Interfaces. https://doi.org/10.1021/am400338n.

    Article  PubMed  Google Scholar 

  39. Zhang Z, Tingaut P, Rentsch D, Zimmermann T, Sèbe G (2015) Controlled silylation of nanofibrillated cellulose in water: reinforcement of a model polydimethylsiloxane network. ChemSusChem. https://doi.org/10.1002/cssc.201500525

    Article  PubMed  Google Scholar 

  40. Li X, Tan D, Xie L, Sun H, Sun S, Zhong G, Ren P (2018) Effect of surface property of halloysite on the crystallization behavior of PBAT. Appl. Clay Sci. https://doi.org/10.1016/j.clay.2018.02.005.

    Article  Google Scholar 

  41. Yu T, Ren J, Li S, Yuan H, Li Y (2010) Effect of fiber surface-treatments on the properties of poly (lactic acid)/ramie composites. Compos. Part A Appl. Sci. https://doi.org/10.1016/j.compositesa.2009.12.006.

    Article  Google Scholar 

  42. Xie J, Wang Z, Zhao Q, Yang Y, Xu J, Waterhouse GI, Zhang K, Li S, Jin P, Jin G (2018) Scale-up fabrication of biodegradable poly (butylene adipate-co-terephthalate)/organophilic–clay nanocomposite films for potential packaging applications. ACS Omega 3. https://doi.org/10.1021/acsomega.7b02062

    Article  Google Scholar 

  43. Šturcová A, Davies GR, Eichhorn SJ (2005) Elastic modulus and stress-transfer properties of tunicate cellulose whiskers. Biomacromolecules. https://doi.org/10.1021/bm049291k.

    Article  PubMed  Google Scholar 

  44. Wu CS (2012) Characterization of cellulose acetate-reinforced aliphatic–aromatic copolyester composites. Carbohydr. Polym. https://doi.org/10.1016/j.carbpol.2011.09.009.

    Article  PubMed  Google Scholar 

  45. Moustafa H, Guizani C, Dupont C, Martin V, Jeguirim M, Dufresne A (2017) Utilization of torrefied coffee grounds as reinforcing agent to produce high-quality biodegradable PBAT composites for food packaging applications. ACS Sustain. Chem. Eng. https://doi.org/10.1021/acssuschemeng.6b02633.

    Article  Google Scholar 

  46. Xing Q, Ruch D, Dubois P, Wu L, Wang WJ (2017) Biodegradable and high-performance poly (butylene adipate-co-terephthalate)–lignin UV-blocking films. ACS Sustain. Chem. Eng. https://doi.org/10.1021/acssuschemeng.7b02370.

    Article  Google Scholar 

  47. Li J, Lai L, Wu L, Severtson SJ, Wang WJ (2018) Enhancement of water vapor barrier properties of biodegradable poly (butylene adipate-co-terephthalate) films with highly oriented organomontmorillonite. ACS Sustain. Chem. Eng. https://doi.org/10.1021/acssuschemeng.8b00430.

    Article  PubMed  PubMed Central  Google Scholar 

  48. Ferreira FV, Franceschi W, Menezes BRC, Brito FS, Lozano K, Coutinho AR, Cividanes LS, Thim GP (2017) Dodecylamine functionalization of carbon nanotubes to improve dispersion, thermal and mechanical properties of polyethylene based nanocomposites. Appl. Surf. Sci. https://doi.org/10.1016/j.apsusc.2017.03.098.

    Article  Google Scholar 

  49. Mohanty S, Nayak SK (2010) Aromatic-aliphatic poly (butylene adipate‐co‐terephthalate) bionanocomposite: influence of organic modification on structure and properties. Polym. Compos. https://doi.org/10.1002/pc.20906.

    Article  Google Scholar 

  50. Yang F, Qiu Z (2011) Preparation, crystallization, and properties of biodegradable poly (butylene adipate-co‐terephthalate)/organomodified montmorillonite nanocomposites. J. Appl. Polym. Sci. https://doi.org/10.1002/app.32619.

    Article  Google Scholar 

  51. Kashani Rahimi S, Aeinehvand R, Kim K, Otaigbe JU (2017) Structure and biocompatibility of bioabsorbable nanocomposites of aliphatic-aromatic copolyester and cellulose nanocrystals. Biomacromolecules. https://doi.org/10.1021/acs.biomac.7b00578

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the technical support provided by RMIT Microscopy & Microanalysis Facility (RMMF) of the University and thank the Australian Research Council (ARC) for funding the SEM Quanta 200. The authors also wish to acknowledge the technical support provided by Dr. Yesim Gozukara and Dr. Kyle Hearn on OTR analysis experiments and NMR experiments.

Funding

The first author acknowledges the scholarship support provided to him by RMIT University.

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization: PC, BA; Methodology: KD, PC; Formal analysis and investigation: KD, MR Field; Writing—original draft preparation: KD; Writing—review and editing: FD, PC, BA; Supervision: FD, PC, BA.

Corresponding authors

Correspondence to Kingshuk Dhali or Benu Adhikari.

Ethics declarations

Competing interest

The authors have no competing interests to declare that are relevant to the content of this article.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dhali, K., Daver, F., Cass, P. et al. Development and Characterisation of Poly(butylene adipate-co-terephthalate)- Silane Modified Cellulose Nanocrystals Composite Materials and Films. J Polym Environ 31, 4506–4521 (2023). https://doi.org/10.1007/s10924-023-02896-w

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10924-023-02896-w

Keywords

Navigation