Skip to main content

Advertisement

Log in

Investigating the Effect of Polyamidoamine Generation 2 (PAMAM-G2) Polymeric Nanostructures Dendrimer on the Performance of Polycarbonate Thin Film Nanocomposite Membranes for Water Treatment

  • Original Paper
  • Published:
Journal of Polymers and the Environment Aims and scope Submit manuscript

Abstract

Thin film nanocomposite membranes (TFN) were fabricated using poly(amidoamine) dendrimer (PAMAM) contains a radially symmetrical and hyperbranched structure comprising of a tremendous entirety of amine bunches (–NH2) on dendrimer branches that cause a hydrophilic structure. It wouldn't be possible for it to have aggressive targets for chemical foulant through the use of the dip-coating method that polyvinyl alcohol (PVA)/PAMAM-G2 solution was applied to polycarbonate (PC) support membranes. The Fourier transform infrared and thermal gravimetric analysis confirmed the synthesis PAMAM dendritic structure. At vacuum trans-membrane pressures (TMP) of 0.4 and 0.6 bar, all fabricated membranes were utilized to remove humic acid (HA) in a submerged membrane system. PVA/PAMAM-G2 top active layer formed on the PC support membrane was verified by images obtained using field-emission scanning electron microscopy (FESEM) and attenuated total reflectance-Fourier transform infrared (ATR-FTIR) equipment. FESEM images showed that a PVA-PAMAM.G2 top layer with a thickness of 201.85 nm was developed on the PC support layer. TFN membranes' hydrophilicity and surface roughness increased and decreased respectively as a result of the incorporation of PAMAM-G2. The TFN with 0.1 wt.% of PAMAM-G2 nanostructures demonstrated increased permeation flux at lower vacuum TMP, according to the results of HA filtration. However, the permeation flux significantly decreased at higher vacuum TMP conditions. The rejection rate for TFC membranes was about 97.9% while for TFN membranes in the presence of PAMAM-G2 polymeric nanostructure it reached to 98.5%.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Greve P, Kahil T, Mochizuki J, Schinko T, Satoh Y, Burek P, Fischer G, Tramberend S, Burtscher R, Langan S (2018) Global assessment of water challenges under uncertainty in water scarcity projections. Nat Sustain 1(9):486–494

    Google Scholar 

  2. Majidi S, Erfan-Niya H, Azamat J, Ziaei S, Cruz-Chú ER, Walther JH (2022) Membrane based water treatment: insight from molecular dynamics simulations. Sep Purif Rev 2022:1–17

    Google Scholar 

  3. Manikandan S, Subbaiya R, Saravanan M, Ponraj M, Selvam M, Pugazhendhi A (2022) A critical review of advanced nanotechnology and hybrid membrane based water recycling, reuse, and wastewater treatment processes. Chemosphere 289:132867

    CAS  PubMed  Google Scholar 

  4. El Batouti M, Alharby NF, Elewa MM (2021) Review of new approaches for fouling mitigation in membrane separation processes in water treatment applications. Separations 9(1):1

    Google Scholar 

  5. Liu C, Jiang Y, Nalaparaju A, Jiang J, Huang A (2019) Post-synthesis of a covalent organic framework nanofiltration membrane for highly efficient water treatment. J Mater Chem A 7(42):24205–24210

    CAS  Google Scholar 

  6. Kotp YH (2021) High-flux TFN nanofiltration membranes incorporated with Camphor-Al2O3 nanoparticles for brackish water desalination. Chemosphere 265:128999

    CAS  PubMed  Google Scholar 

  7. Lee S, Kang T, Lee JY, Park J, Choi SH, Yu JY, Ok S, Park SH (2021) Thin-film composite nanofiltration membranes for non-polar solvents. Membranes 11(3):184

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Park SH, Alammar A, Fulop Z, Pulido BA, Nunes SP, Szekely G (2021) Hydrophobic thin film composite nanofiltration membranes derived solely from sustainable sources. Green Chem 23(3):1175–1184

    CAS  Google Scholar 

  9. Qi R (2022) Novel thin-film nanocomposite membranes with crosslinked polyvinyl alcohol interlayer for perfluorinated compounds (PFCs) removal. Process Saf Environ Protect 163:498

    CAS  Google Scholar 

  10. Jia L, Zhang X, Zhu J, Cong S, Wang J, Liu J, Zhang Y (2019) Polyvinyl alcohol-assisted high-flux thin film nanocomposite membranes incorporated with halloysite nanotubes for nanofiltration. Environ Sci Water Res Technol 5(8):1412–1422

    CAS  Google Scholar 

  11. Ng ZC, Lau WJ, Ismail AF (2020) GO/PVA-integrated TFN RO membrane: exploring the effect of orientation switching between PA and GO/PVA and evaluating the GO loading impact. Desalination 496:114538

    CAS  Google Scholar 

  12. Huang Z, Yang G, Zhang J, Gray S, Xie Z (2021) Dual-layer membranes with a thin film hydrophilic MOF/PVA nanocomposite for enhanced antiwetting property in membrane distillation. Desalination 518:115268

    CAS  Google Scholar 

  13. Baroña GNB, Choi M, Jung B (2012) High permeate flux of PVA/PSf thin film composite nanofiltration membrane with aluminosilicate single-walled nanotubes. J Colloid Interface Sci 386(1):189–197

    PubMed  Google Scholar 

  14. Behdarvand F, Valamohammadi E, Tofighy MA, Mohammadi T (2021) Polyvinyl alcohol/polyethersulfone thin-film nanocomposite membranes with carbon nanomaterials incorporated in substrate for water treatment. J Environ Chem Eng 9(1):104650

    CAS  Google Scholar 

  15. Zhang N, Song X, Jiang H, Tang CY (2021) Advanced thin-film nanocomposite membranes embedded with organic-based nanomaterials for water and organic solvent purification: a review. Sep Purif Technol 269:118719

    CAS  Google Scholar 

  16. Roufegari-Nejhad E, Sirousazar M, Abbasi-Chiyaneh V, Kheiri F (2019) Removal of methylene blue from aqueous solutions using poly (vinyl alcohol)/montmorillonite nanocomposite hydrogels: Taguchi optimization. J Polym Environ 27(10):2239–2249

    CAS  Google Scholar 

  17. Etemadi H, Khezraqa H, Hermani M (2022) Incorporation of amino-functionalized ZnO nanoparticles into polycarbonate/polyvinyl alcohol thin-film membrane for enhanced water treatment. Polym Eng Sci 62(9):2891–2899

    CAS  Google Scholar 

  18. Hermani M, Etemadi H, Khezraqa H (2022) Polycarbonate/polyvinyl alcohol thin film nanocomposite membrane incorporated with silver nanoparticles for water treatment. Braz J Chem Eng. https://doi.org/10.1007/s43153-022-00273-z

    Article  Google Scholar 

  19. El-Zahhar AA, Alghamdi MM, Alshahrani NM, Awwad NS, Idris AM (2022) Development of composite thin-film nanofiltration membranes based on polyethersulfone for water purification. J Polym Environ 30(10):4350–4361

    CAS  Google Scholar 

  20. Najafi F, Ghasemian N, Safari M, Salami-Kalajahi M (2021) Poly (propylene imine) dendrimer as reducing agent for chloroauric acid to fabricate and stabilize gold nanoparticles. J Phys Chem Solids 148:109682

    CAS  Google Scholar 

  21. Zhu WP, Gao J, Sun SP, Zhang S, Chung TS (2015) Poly (amidoamine) dendrimer (PAMAM) grafted on thin film composite (TFC) nanofiltration (NF) hollow fiber membranes for heavy metal removal. J Membr Sci 487:117–126

    CAS  Google Scholar 

  22. Banaei M, Salami-Kalajahi M (2018) A “grafting to” approach to synthesize low cytotoxic poly (aminoamide)-dendrimer-grafted Fe3O4 magnetic nanoparticles. Adv Polym Technol 37(3):943–948

    CAS  Google Scholar 

  23. Banaei M, Salami-Kalajahi M (2015) Synthesis of poly (2-hydroxyethyl methacrylate)-grafted poly (aminoamide) dendrimers as polymeric nanostructures. Colloid Polym Sci 293(5):1553–1559

    CAS  Google Scholar 

  24. Fang W, Shi L, Wang R (2014) Mixed polyamide-based composite nanofiltration hollow fiber membranes with improved low-pressure water softening capability. J Membr Sci 468:52–61

    CAS  Google Scholar 

  25. Sum J, Ahmad A, Ooi B (2014) Synthesis of thin film composite membrane using mixed dendritic poly (amidoamine) and void filling piperazine monomers. J Membr Sci 466:183–191

    CAS  Google Scholar 

  26. Khezraqa H, Etemadi H, Qazvini H, Salami-Kalajahi M (2022) Novel polycarbonate membrane embedded with multi-walled carbon nanotube for water treatment: a comparative study between bovine serum albumin and humic acid removal. Polym Bull 79(3):1467–1484

    CAS  Google Scholar 

  27. Kurnaz Yetim N, Kurşun Baysak F, Koç MM, Nartop D (2021) Synthesis and characterization of Au and Bi2O3 decorated Fe3O4@ PAMAM dendrimer nanocomposites for medical applications. J Nanostruct Chem 11(4):589–599

    CAS  Google Scholar 

  28. Arumugam S, Ramamoorthy P, Chakkarapani LD (2019) Biodegradable dendrimer functionalized carbon nanotube-hybrids for biomedical applications. J Polym Res 26(8):1–17

    CAS  Google Scholar 

  29. Ruiz-Cañas MC, Corredor LM, Quintero HI, Manrique E, Romero Bohórquez AR (2020) Morphological and structural properties of amino-functionalized fumed nanosilica and its comparison with nanoparticles obtained by modified Stöber method. Molecules 25(12):2868

    PubMed  PubMed Central  Google Scholar 

  30. Song H, Kim C (2013) Fabrication and properties of ultrafiltration membranes composed of polysulfone and poly (1-vinylpyrrolidone) grafted silica nanoparticles. J Membr Sci 444:318–326

    CAS  Google Scholar 

  31. Etemadia H, Qazvinia H, Alishahb NH (2021) Preparation of high performance polycarbonate/acrylonitrile-butadiene-styrene blend ultrafiltration membrane for water treatment. Desalin Water Treat 218:146–154

    Google Scholar 

  32. Xu X, Lü S, Gao C, Wang X, Bai X, Gao N, Liu M (2015) Facile preparation of pH-sensitive and self-fluorescent mesoporous silica nanoparticles modified with PAMAM dendrimers for label-free imaging and drug delivery. Chem Eng J 266:171–178

    CAS  Google Scholar 

  33. Xu X, Lü S, Gao C, Bai X, Feng C, Gao N, Liu M (2015) Multifunctional drug carriers comprised of mesoporous silica nanoparticles and polyamidoamine dendrimers based on layer-by-layer assembly. Mater Des 88:1127–1133

    CAS  Google Scholar 

  34. Wang B, Zhang K, Wang J, Zhao R, Zhang Q, Kong X (2020) Poly (amidoamine)-modified mesoporous silica nanoparticles as a mucoadhesive drug delivery system for potential bladder cancer therapy. Colloids Surf, B 189:110832

    CAS  Google Scholar 

  35. Lotfi R, Hayati B, Rahimi S, Shekarchi AA, Mahmoodi NM, Bagheri A (2019) Synthesis and characterization of PAMAM/SiO2 nanohybrid as a new promising adsorbent for pharmaceuticals. Microchem J 146:1150–1159

    CAS  Google Scholar 

  36. Popescu LM, Piticescu RM, Stoiciu M, Vasile E, Trusca R (2012) Investigation of thermal behaviour of hybrid nanostructures based on Fe 2 O 3 and PAMAM dendrimers. J Therm Anal Calorim 110(1):357–362

    CAS  Google Scholar 

  37. Stancu I-C (2010) Gelatin hydrogels with PAMAM nanostructured surface and high density surface-localized amino groups. React Funct Polym 70(5):314–324

    CAS  Google Scholar 

  38. Hernández-Ainsa S, Fedeli E, Barberá J, Marcos M, Sierra T, Serrano JL (2014) Self-assembly modulation in ionic PAMAM derivatives. Soft Matter 10(2):281–289

    PubMed  Google Scholar 

  39. Kumar R, Kumar M, Awasthi K (2016) Functionalized Pd-decorated and aligned MWCNTs in polycarbonate as a selective membrane for hydrogen separation. Int J Hydrogen Energy 41(48):23057–23066

    CAS  Google Scholar 

  40. Bojnourd FM, Pakizeh M (2018) Preparation and characterization of a PVA/PSf thin film composite membrane after incorporation of PSSMA into a selective layer and its application for pharmaceutical removal. Sep Purif Technol 192:5–14

    Google Scholar 

  41. Tretinnikov O, Zagorskaya S (2012) Determination of the degree of crystallinity of poly (vinyl alcohol) by FTIR spectroscopy. J Appl Spectrosc 79(4):521–526

    CAS  Google Scholar 

  42. Tajabadi M, Khosroshahi ME, Bonakdar S (2013) An efficient method of SPION synthesis coated with third generation PAMAM dendrimer. Colloids Surf, A 431:18–26

    CAS  Google Scholar 

  43. Yuliwati E, Ismail A (2011) Effect of additives concentration on the surface properties and performance of PVDF ultrafiltration membranes for refinery produced wastewater treatment. Desalination 273(1):226–234

    CAS  Google Scholar 

  44. Etemadi H, Yegani R (2019) Effect of aeration rate on the anti-biofouling properties of cellulose acetate nanocomposite membranes in a membrane bioreactor system for the treatment of pharmaceutical wastewater. Biofouling 35(6):618–630

    CAS  PubMed  Google Scholar 

  45. Pourjafar S, Rahimpour A, Jahanshahi M (2012) Synthesis and characterization of PVA/PES thin film composite nanofiltration membrane modified with TiO2 nanoparticles for better performance and surface properties. J Ind Eng Chem 18(4):1398–1405

    CAS  Google Scholar 

  46. Zhu X, Cheng X, Luo X, Liu Y, Xu D, Tang X, Gan Z, Yang L, Li G, Liang H (2020) Ultrathin thin-film composite polyamide membranes constructed on hydrophilic poly (vinyl alcohol) decorated support toward enhanced nanofiltration performance. Environ Sci Technol 54(10):6365–6374

    CAS  PubMed  Google Scholar 

  47. Abdelsamad AM, Matthias M, Khalil AS, Ulbricht M (2019) Nanofillers dissolution as a crucial challenge for the performance stability of thin-film nanocomposite desalination membranes. Sep Purif Technol 228:115767

    CAS  Google Scholar 

  48. Etemadi H, Fonouni M, Yegani R (2020) Investigation of antifouling properties of polypropylene/TiO2 nanocomposite membrane under different aeration rate in membrane bioreactor system. Biotechnol Rep 25:e00414

    Google Scholar 

  49. Oghyanous FA, Etemadi H, Yegani R (2020) Foaming control and determination of biokinetic coefficients in membrane bioreactor system under various organic loading rate and sludge retention time. Biochem Eng J 157:107491

    Google Scholar 

  50. Behboudi A, Jafarzadeh Y, Yegani R (2017) Polyvinyl chloride/polycarbonate blend ultrafiltration membranes for water treatment. J Membr Sci 534:18–24

    CAS  Google Scholar 

  51. Gu Z, Li P, Gao X, Qin Y, Pan Y, Zhu Y, Yu S, Xia Q, Liu Y, Zhao D (2021) Surface-crumpled thin-film nanocomposite membranes with elevated nanofiltration performance enabled by facilely synthesized covalent organic frameworks. J Membr Sci 625:119144

    CAS  Google Scholar 

  52. Bavel E, Afkhami A, Madrakian T (2020) Removal and preconcentration of Pb (II) heavy metal ion from water and waste-water samples onto poly (vinyl alcohol)/polyethyleneimine/Fe3O4 microfibers nanocomposite. J Polym Environ 28(2):614–623

    CAS  Google Scholar 

  53. Guo M, Wang S, Gu K, Song X, Zhou Y, Gao C (2019) Gradient cross-linked structure: towards superior PVA nanofiltration membrane performance. J Membr Sci 569:83–90

    CAS  Google Scholar 

  54. Heidari S, Etemadi H, Yegani R (2021) A comprehensive analysis of membrane fouling in microfiltration of complex linear macromolecules based on theoretical modeling and FESEM images. J Chem Technol Biotechnol 96(2):360–373

    CAS  Google Scholar 

  55. Behboudi A, Jafarzadeh Y, Yegani R (2018) Incorporation of silica grafted silver nanoparticles into polyvinyl chloride/polycarbonate hollow fiber membranes for pharmaceutical wastewater treatment. Chem Eng Res Des 135:153–165

    CAS  Google Scholar 

  56. Oghyanous FA, Etemadi H, Yegani R (2021) The effect of sludge retention time and organic loading rate on performance and membrane fouling in membrane bioreactor. J Chem Technol Biotechnol 96(3):743–754

    CAS  Google Scholar 

  57. Bi R, Zhang Q, Zhang R, Su Y, Jiang Z (2018) Thin film nanocomposite membranes incorporated with graphene quantum dots for high flux and antifouling property. J Membr Sci 553:17–24

    CAS  Google Scholar 

  58. Amini M, Etemadi H, Akbarzadeh A, Yegani R (2017) Preparation and performance evaluation of high-density polyethylene/silica nanocomposite membranes in membrane bioreactor system. Biochem Eng J 127:196–205

    CAS  Google Scholar 

  59. Hong J, He Y (2014) Polyvinylidene fluoride ultrafiltration membrane blended with nano-ZnO particle for photo-catalysis self-cleaning. Desalination 332(1):67–75

    CAS  Google Scholar 

  60. Vatanpour V, Madaeni SS, Moradian R, Zinadini S, Astinchap B (2012) Novel antibifouling nanofiltration polyethersulfone membrane fabricated from embedding TiO2 coated multiwalled carbon nanotubes. Sep Purif Technol 90:69–82

    CAS  Google Scholar 

  61. Oghyanous FA, Etemadi H, Yegani R, Ghofrani B (2022) Membrane fouling and removal performance of submerged aerobic membrane bioreactors: a comparative study of optimizing operational conditions and membrane modification. J Chem Technol Biotechnol 97(5):1190–1199

    CAS  Google Scholar 

  62. Etemadi H, Yegani R, Seyfollahi M (2017) The effect of amino functionalized and polyethylene glycol grafted nanodiamond on anti-biofouling properties of cellulose acetate membrane in membrane bioreactor systems. Sep Purif Technol 177:350–362

    CAS  Google Scholar 

  63. Etemadi H, Kazemi R, Ghasemian N, Shokri E (2022) Effect of Transmembrane pressure on antifouling properties of PVC/Clinoptilolite ultrafiltration nanocomposite membranes. Chem Eng Technol 45(6):1192–1200

    CAS  Google Scholar 

  64. Ting LLH, Teow YH, Mahmoudi E, Ooi BS (2023) Development and optimization of low surface free energy of rGO-PVDF mixed matrix membrane for membrane distillation. Sep Purif Technol 305:122428

    Google Scholar 

  65. Wang C, Chen W-N, Hu Q-Y, Ji M, Gao X (2015) Dynamic fouling behavior and cake layer structure changes in nonwoven membrane bioreactor for bath wastewater treatment. Chem Eng J 264:462–469

    CAS  Google Scholar 

  66. Chen D, Hu R, Song Y, Gao F, Peng W, Zhang Y, Xie Z, Kang J, Zheng Z, Cao Y (2023) Hydrophilic modified polydopamine tailored heterogeneous polyamide in thin-film nanocomposite membranes for enhanced separation performance and anti-fouling properties. J Membr Sci 666:121124

    CAS  Google Scholar 

  67. Cheshomi N, Pakizeh M, Namvar-Mahboub M (2018) Preparation and characterization of TiO2/Pebax/(PSf-PES) thin film nanocomposite membrane for humic acid removal from water. Polym Adv Technol 29(4):1303–1312

    CAS  Google Scholar 

  68. Abdikheibari S, Dumée LF, Jegatheesan V, Mustafa Z, Le-Clech P, Lei W, Baskaran K (2020) Natural organic matter removal and fouling resistance properties of a boron nitride nanosheet-functionalized thin film nanocomposite membrane and its impact on permeate chlorine demand. J Water Process Eng 34:101160

    Google Scholar 

  69. Abdikheibari S, Lei W, Dumée LF, Milne N, Baskaran K (2018) Thin film nanocomposite nanofiltration membranes from amine functionalized-boron nitride/polypiperazine amide with enhanced flux and fouling resistance. J Mater Chem A 6(25):12066–12081

    CAS  Google Scholar 

  70. Dsouza SA, Pereira MM, Polisetti V, Mondal D, Nataraj SK (2020) Introducing deep eutectic solvents as flux boosting and surface cleaning agents for thin film composite polyamide membranes. Green Chem 22(8):2381–2387

    Google Scholar 

  71. Song H, Shao J, He Y, Liu B, Zhong X (2012) Natural organic matter removal and flux decline with PEG–TiO2-doped PVDF membranes by integration of ultrafiltration with photocatalysis. J Membr Sci 405:48–56

    Google Scholar 

  72. De la Rubia A, Rodríguez M, León VM, Prats D (2008) Removal of natural organic matter and THM formation potential by ultra-and nanofiltration of surface water. Water Res 42(3):714–722

    PubMed  Google Scholar 

Download references

Funding

There is no financial sources funding regarding of this study.

Author information

Authors and Affiliations

Authors

Contributions

HK conducted the experiments and wrote the manuscript. HE contributed in terms of discussion of the manuscript and guidance in terms of experimental and writing. MSK contributed in terms of nanoparticles modification and discussion for experimental.

Corresponding author

Correspondence to Habib Etemadi.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khezraqa, H., Etemadi, H. & Salami-Kalajahi, M. Investigating the Effect of Polyamidoamine Generation 2 (PAMAM-G2) Polymeric Nanostructures Dendrimer on the Performance of Polycarbonate Thin Film Nanocomposite Membranes for Water Treatment. J Polym Environ 31, 3604–3618 (2023). https://doi.org/10.1007/s10924-023-02830-0

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10924-023-02830-0

Keywords

Navigation