Skip to main content

Advertisement

Log in

Study of dual Filler Mixed Matrix Membranes with acid-functionalized MWCNTs and Metal-Organic Framework (UiO-66-NH2) in Cellulose Acetate for CO2 Separation

  • Original Paper
  • Published:
Journal of Polymers and the Environment Aims and scope Submit manuscript

Abstract

Biogas upgradation is vital for enhancing its calorific value and reducing corrosion. Membrane-based CO2 separation is an alternative to conventional separation techniques. Polymer membranes such as cellulose acetate have low CO2 permeability. Mixed matrix membranes (MMMs), incorporating nanofillers, either single or dual, in a polymer matrix, are explored to enhance CO2 separation. This work investigates the CO2 separation from model biogas employing dual filler MMMs prepared using acid-functionalized multi-walled carbon nano-tubes (f-MWCNTs) and amine-functionalized metal-organic framework (UiO-66-NH2) as nanofillers and cellulose acetate (CA) as the polymer matrix. MMMs were fabricated by varying the f-MWCNTs loading from 0.01 wt% to 1 wt% with a constant loading of 10 wt% UiO-66-NH2. The morphology, chemical structure, and thermal stability were analyzed using scanning electron microscopy (FESEM), X-Ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), differential scanning calorimetry (DSC), and thermo gravimetric analysis (TGA). The MMMs 0.01wt% f-MWCNTs@10wt%UiO-66-NH2/CA showed enhanced gas separation performance with CO2 permeability of 31.65 Barrer and CO2/CH4 selectivity of 16.78, compared to the base polymer (CO2 permeability of 6.44 Barrer and CO2/CH4 selectivity of 20.72) and single filler UiO-66-NH2 MMM (CO2 permeability of 10.18 Barrer and CO2/CH4 selectivity of 10.43). The permeability of 0.01wt% f-MWCNTs@10wt%UiO-66-NH2/CA is enhanced by 391% compared to the pure CA membrane and 210% compared to UiO-66-NH2/CA MMMs. A comparison was made with dual filler MMMs fabricated with non-functionalized MWCNTs and UiO-66-NH2, and it was observed that the acid-functionalized MWCNTs-based dual filler MMMs performed better.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Jahan Z, Niazi MBK, Gul S et al (2021) Mimic enzyme based Cellulose Nanocrystals/PVA nanocomposite membranes for Enrichment of Biogas as a Natural Gas Substitute. J Polym Environ 29(8):2598–2608. https://doi.org/10.1007/s10924-020-02014-0

    Article  CAS  Google Scholar 

  2. Raza A, Farrukh S, Hussain A, Synthesis (2017) Characterization and NH3/N2 gas permeation study of nanocomposite membranes. J Polym Environ 25(1):46–55. https://doi.org/10.1007/s10924-016-0783-6

    Article  CAS  Google Scholar 

  3. Niazi MBK, Jahan Z, Ahmed A, Rafiq S, Jamil F, Gregersen ØW (2020) Effect of Zn-Cyclen mimic enzyme on mechanical, thermal and Swelling Properties of Cellulose Nanocrystals/PVA nanocomposite membranes. J Polym Environ 28(7):1921–1933. https://doi.org/10.1007/s10924-020-01737-4

    Article  CAS  Google Scholar 

  4. Jadhav N, Nirmal Kumar S, Tanvidkar PS, Kuncharam BVR (2020) Synthesis and characterization of mixed-matrix material of Zirconium based metal organic framework (MOF: UiO-66-NH2) and poly(ether-urethane-urea). Mater Today Proc. ;28:734–738. doi:https://doi.org/10.1016/j.matpr.2019.12.289

  5. Robeson LM (1991) Correlation of separation factor versus permeability for polymeric membranes. J Memb Sci 62(2):165–185. https://doi.org/10.1016/0376-7388(91)80060-J

    Article  CAS  Google Scholar 

  6. Robeson LM (2008) The upper bound revisited. J Memb Sci 320(1–2):390–400. https://doi.org/10.1016/j.memsci.2008.04.030

    Article  CAS  Google Scholar 

  7. Zhao Y, Tian H, Ouyang Y et al (2022) Poly (Vinyl Alcohol) Composite membrane with polyamidoamine dendrimers for efficient separation of CO2/H2 and CO2/N2. J Polym Environ 30(10):4193–4200. https://doi.org/10.1007/s10924-022-02491-5

    Article  CAS  Google Scholar 

  8. Zornoza B, Seoane B, Zamaro JM, Téllez C, Coronas J (2011) Combination of MOFs and zeolites for mixed-matrix membranes. ChemPhysChem 12(15):2781–2785. https://doi.org/10.1002/cphc.201100583

    Article  CAS  PubMed  Google Scholar 

  9. Farnam M, bin Mukhtar H, bin, Mohd Shariff A (2021) A Review on Glassy and Rubbery Polymeric Membranes for Natural Gas Purification. ChemBioEng Rev. ;8(2):90–109. doi:https://doi.org/10.1002/cben.202100002

  10. Kamble AR, Patel CM, Murthy ZVP (2021) A review on the recent advances in mixed matrix membranes for gas separation processes. Renew Sustain Energy Rev 145:111062. https://doi.org/10.1016/j.rser.2021.111062

    Article  CAS  Google Scholar 

  11. Borgohain R, Jain N, Prasad B, Mandal B, Su B (2019) Carboxymethyl chitosan/carbon nanotubes mixed matrix membranes for CO2 separation. React Funct Polym 143(June):104331. https://doi.org/10.1016/j.reactfunctpolym.2019.104331

    Article  CAS  Google Scholar 

  12. Ismail AF, Rahim NH, Mustafa A et al (2011) Gas separation performance of polyethersulfone/multi-walled carbon nanotubes mixed matrix membranes. Sep Purif Technol 80(1):20–31. https://doi.org/10.1016/j.seppur.2011.03.031

    Article  CAS  Google Scholar 

  13. Tanvidkar P, Appari S, Kuncharam BVR (2022) A review of techniques to improve performance of metal organic framework (MOF) based mixed matrix membranes for CO2/CH4 separation. Rev Environ Sci Bio/Technology 21(2):539–569. https://doi.org/10.1007/s11157-022-09612-5

    Article  CAS  Google Scholar 

  14. Liu Y, Takata K, Mukai Y, Kita H, Tanaka K (2021) Nano-porous Zeolite and MOF filled mixed matrix membranes for gas separation. MATEC Web Conf 333:04008. https://doi.org/10.1051/matecconf/202133304008

    Article  CAS  Google Scholar 

  15. Akbar Samadi AS, Navarchian AH (2016) Matrimid–polyaniline/clay mixed-matrix membranes with plasticization resistance for separation of CO2 from natural gas. Polym Adv Technol 27(9):1228–1236. https://doi.org/10.1002/pat.3788

    Article  CAS  Google Scholar 

  16. Zhang N, Wu H, Li F et al (2018) Heterostructured filler in mixed matrix membranes to coordinate physical and chemical selectivities for enhanced CO2 separation. J Memb Sci 567:272–280. https://doi.org/10.1016/j.memsci.2018.09.044

    Article  CAS  Google Scholar 

  17. Zhang H, Guo R, Hou J, Wei Z, Li X (2016) Mixed-matrix membranes containing Carbon Nanotubes Composite with Hydrogel for efficient CO2 separation. ACS Appl Mater Interfaces 8(42):29044–29051. https://doi.org/10.1021/acsami.6b09786

    Article  CAS  PubMed  Google Scholar 

  18. Hussain A, Farrukh S, Hussain A, Ayoub M (2019) Carbon capture from natural gas using multi-walled CNTs based mixed matrix membranes. Environ Technol (United Kingdom) 40(7):843–854. https://doi.org/10.1080/09593330.2017.1408696

    Article  CAS  Google Scholar 

  19. Davood Abadi Farahani MH, Hua D, Chung TS (2018) Cross-linked mixed matrix membranes (MMMs) consisting of amine-functionalized multi-walled carbon nanotubes and P84 polyimide for organic solvent nanofiltration (OSN) with enhanced flux. J Memb Sci 548:319–331. https://doi.org/10.1016/j.memsci.2017.11.037

    Article  CAS  Google Scholar 

  20. Xue Q, Pan X, Li X, Zhang J, Guo Q (2017) Effective enhancement of gas separation performance in mixed matrix membranes using core/shell structured multi-walled carbon nanotube/graphene oxide nanoribbons. Nanotechnology 28(6):065702. https://doi.org/10.1088/1361-6528/aa510d

    Article  CAS  PubMed  Google Scholar 

  21. Tanvidkar P, Jonnalagedda A, Kuncharam BVR (2022) Fabrication and testing of mixed matrix membranes of UiO-66‐NH2 in cellulose acetate for CO2 separation from model biogas. J Appl Polym Sci Published online October 27. https://doi.org/10.1002/app.53264

  22. Feng S, Sun J, Feng S et al (2019) Acid-promoted synthesis of MWCNT/UiO-66-NH2 nanocomposite for highly efficient removal of ketoprofen. Chem Lett 48(4):394–397. https://doi.org/10.1246/cl.180953

    Article  CAS  Google Scholar 

  23. Datsyuk V, Kalyva M, Papagelis K et al (2008) Chemical oxidation of multiwalled carbon nanotubes. Carbon N Y 46(6):833–840. https://doi.org/10.1016/j.carbon.2008.02.012

    Article  CAS  Google Scholar 

  24. Gonzalez-Calderon JA, Castrejon-Gonzalez EO, Medellin-Rodriguez FJ, Stribeck N, Almendarez-Camarillo A (2015) Functionalization of multi-walled carbon nanotubes (MWCNTs) with pimelic acid molecules: effect of linkage on β-crystal formation in an isotactic polypropylene (iPP) matrix. J Mater Sci 50(3):1457–1468. https://doi.org/10.1007/s10853-014-8706-1

    Article  CAS  Google Scholar 

  25. Cavka JH, Jakobsen S, Olsbye U et al (2008) A new zirconium inorganic building brick forming metal organic frameworks with exceptional stability. J Am Chem Soc 130(42):13850–13851. https://doi.org/10.1021/ja8057953

    Article  CAS  PubMed  Google Scholar 

  26. Li K, Lin S, Li Y, Zhuang Q, Gu J (2018) Aqueous-phase synthesis of Mesoporous Zr-Based MOFs templated by Amphoteric Surfactants. Angew Chemie - Int Ed 57(13):3439–3443. https://doi.org/10.1002/anie.201800619

    Article  CAS  Google Scholar 

  27. Japip S, Wang H, Xiao Y, Chung TS (2014) Highly permeable zeolitic imidazolate framework (ZIF)-71 nano-particles enhanced polyimide membranes for gas separation. J Memb Sci 467:162–174. https://doi.org/10.1016/j.memsci.2014.05.025

    Article  CAS  Google Scholar 

  28. Koros WJ, Fleming GK (1993) Membrane-based gas separation. J Memb Sci 83(1):1–80. https://doi.org/10.1016/0376-7388(93)80013-N

    Article  CAS  Google Scholar 

  29. Baker RW, Lokhandwala K (2008) Natural Gas Processing with membranes: an overview. Ind Eng Chem Res 47(7):2109–2121. https://doi.org/10.1021/ie071083w

    Article  CAS  Google Scholar 

  30. Ge BS, Wang T, Sun HX, Gao W, Zhao HR (2018) Preparation of mixed matrix membranes based on polyimide and aminated graphene oxide for CO2 separation. Polym Adv Technol 29(4):1334–1343. https://doi.org/10.1002/pat.4245

    Article  CAS  Google Scholar 

  31. Shi X, Zhang X, Bi F et al (2020) Effective toluene adsorption over defective UiO-66-NH2: an experimental and computational exploration. J Mol Liq 316:113812. https://doi.org/10.1016/j.molliq.2020.113812

    Article  CAS  Google Scholar 

  32. Nie P, Min C, Song HJ, Chen X, Zhang Z, Zhao K (2015) Preparation and tribological properties of polyimide/carboxyl-functionalized multi-walled carbon nanotube nanocomposite films under seawater lubrication. Tribol Lett 58(1):1–12. https://doi.org/10.1007/s11249-015-0476-7

    Article  CAS  Google Scholar 

  33. Gao S, Xing H, Li Y, Wang H (2018) Synthesis of Cu2O/multi-walled carbon nanotube hybrid material and its microwave absorption performance. Res Chem Intermed 44(5):3425–3435. https://doi.org/10.1007/s11164-018-3316-1

    Article  CAS  Google Scholar 

  34. Sundararajan S, Samui AB, Kulkarni PS (2017) Shape-stabilized poly(ethylene glycol) (PEG)-cellulose acetate blend preparation with superior PEG loading via microwave-assisted blending. Sol Energy 144:32–39. https://doi.org/10.1016/j.solener.2016.12.056

    Article  CAS  Google Scholar 

  35. Pechar TW, Tsapatsis M, Marand E, Davis R (2002) Preparation and characterization of a glassy fluorinated polyimide zeolite-mixed matrix membrane. Desalination 146(1–3):3–9. https://doi.org/10.1016/S0011-9164(02)00462-9

    Article  CAS  Google Scholar 

  36. Nasiri Khalil Abad S, Mozammel M, Moghaddam J, Mostafaei A, Chmielus M (2020) Highly porous, flexible and robust cellulose acetate/Au/ZnO as a hybrid photocatalyst. Appl Surf Sci 526(March):146237. https://doi.org/10.1016/j.apsusc.2020.146237

    Article  CAS  Google Scholar 

  37. Chen B, Wan C, Kang X et al (2019) Enhanced CO2 separation of mixed matrix membranes with ZIF-8@GO composites as fillers: Effect of reaction time of ZIF-8@GO. Sep Purif Technol 223(April):113–122. https://doi.org/10.1016/j.seppur.2019.04.063

    Article  CAS  Google Scholar 

  38. Castarlenas S, Téllez C, Coronas J (2017) Gas separation with mixed matrix membranes obtained from MOF UiO-66-graphite oxide hybrids. J Memb Sci 526(November 2016):205–211. https://doi.org/10.1016/j.memsci.2016.12.041

    Article  CAS  Google Scholar 

  39. Molavi H, Eskandari A, Shojaei A, Mousavi SA (2018) Enhancing CO2/N2 adsorption selectivity via post-synthetic modification of NH2-UiO-66(zr). Microporous Mesoporous Mater 257:193–201. https://doi.org/10.1016/j.micromeso.2017.08.043

    Article  CAS  Google Scholar 

  40. Zhao D, Jiang Y, Zhu G, Zheng J, Ding Y (2018) Study on morphology, molecular weight and thermal properties of composite microspheres prepared by controlling feeding ways and reaction time. J Appl Polym Sci 135(4):45741. https://doi.org/10.1002/app.45741

    Article  CAS  Google Scholar 

  41. Hosseinzadeh Beiragh H, Omidkhah M, Abedini R, Khosravi T, Pakseresht S (2016) Synthesis and characterization of poly (ether-block-amide) mixed matrix membranes incorporated by nanoporous ZSM-5 particles for CO2/CH4 separation. Asia-Pacific J Chem Eng 11(4):522–532. https://doi.org/10.1002/apj.1973

    Article  CAS  Google Scholar 

  42. Gkikas G, Barkoula NM, Paipetis AS (2012) Effect of dispersion conditions on the thermo-mechanical and toughness properties of multi walled carbon nanotubes-reinforced epoxy. In: Composites Part B: Engineering. Vol 43. Elsevier; :2697–2705. doi:https://doi.org/10.1016/j.compositesb.2012.01.070

  43. Bikiaris D, Vassiliou A, Chrissafis K, Paraskevopoulos KM, Jannakoudakis A, Docoslis A (2008) Effect of acid treated multi-walled carbon nanotubes on the mechanical, permeability, thermal properties and thermo-oxidative stability of isotactic polypropylene. Polym Degrad Stab 93(5):952–967. https://doi.org/10.1016/j.polymdegradstab.2008.01.033

    Article  CAS  Google Scholar 

  44. Pacheco MJ, Vences LJ, Moreno H, Pacheco JO, Valdivia R, Hernández C, Review (2021) Mixed-matrix membranes with CNT for CO2 separation processes. Membr (Basel) 11(6):457. https://doi.org/10.3390/membranes11060457

    Article  CAS  Google Scholar 

  45. Liu C, Kulprathipanja S (2010) Mixed-matrix membranes. Zeolites in industrial separation and catalysis. Wiley-VCH Verlag GmbH & Co. KGaA, pp 329–353. doi:https://doi.org/10.1002/9783527629565.ch11

  46. Adams R, Johnson JR, Zhang C et al Mixed-Matrix Membranes. Encycl Membr Sci Technol.Published online September27, 2013:1–34. doi:https://doi.org/10.1002/9781118522318.EMST046

  47. Amirkhani F, Mosadegh M, Asghari M, Parnian MJ (2020) The beneficial impacts of functional groups of CNT on structure and gas separation properties of PEBA mixed matrix membranes. Polym Test 82(December 2019):106285. https://doi.org/10.1016/j.polymertesting.2019.106285

    Article  CAS  Google Scholar 

  48. Sadrzadeh M, Amirilargani M, Shahidi K, Mohammadi T (2011) Pure and mixed gas permeation through a composite polydimethylsiloxane membrane. Polym Adv Technol 22(5):586–597. https://doi.org/10.1002/pat.1551

    Article  CAS  Google Scholar 

  49. Xin Q, Liu T, Li Z et al (2015) Mixed matrix membranes composed of sulfonated poly(ether ether ketone) and a sulfonated metal–organic framework for gas separation. J Memb Sci 488:67–78. https://doi.org/10.1016/j.memsci.2015.03.060

    Article  CAS  Google Scholar 

  50. Xin Q, Li Z, Li C et al (2015) Enhancing the CO 2 separation performance of composite membranes by the incorporation of amino acid-functionalized graphene oxide. J Mater Chem A 3(12):6629–6641. https://doi.org/10.1039/C5TA00506J

    Article  CAS  Google Scholar 

Download references

Funding

The work is funded by the Department of Science and Technology (DST)- Science and Engineering Research Board (SERB), SRG/2019/000336. Principal Investigator: Bhanu Vardhan Reddy Kuncharam.

Author information

Authors and Affiliations

Authors

Contributions

Priya Tanvidkar (PT): Conceptualization, methodology, Investigation, data curation, writing-original draft; Bharat Nayak (BN): methodology, Investigation, data curation, visualization; Bhanu Vardhan Reddy Kuncharam (BVRK): Conceptualization, methodology, formal analysis, visualization, writing-review & editing, funding acquisition, supervision.

Corresponding author

Correspondence to Bhanu Vardhan Reddy Kuncharam.

Ethics declarations

Competing Interests

The authors have no relevant financial or non-financial interests to disclose.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tanvidkar, P., Nayak, B. & Kuncharam, B.V. Study of dual Filler Mixed Matrix Membranes with acid-functionalized MWCNTs and Metal-Organic Framework (UiO-66-NH2) in Cellulose Acetate for CO2 Separation. J Polym Environ 31, 3404–3417 (2023). https://doi.org/10.1007/s10924-023-02827-9

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10924-023-02827-9

Keywords

Navigation