Skip to main content
Log in

Fabrication of Biofunctionalized Protease-Based Chitosan/Collagen Composite Membranes and Efficient Biodegradation Using Recombinant Aspergillus Fumigatus

  • Original Paper
  • Published:
Journal of Polymers and the Environment Aims and scope Submit manuscript

Abstract

The present study aimed at developing chitosan/collagen protease-based composite membranes loaded with enzyme nanoparticles and accessing its efficient biodegradation using a recombinantly produced aspartic protease from Aspergillus fumigatus (AfAP) with functional biochemical properties. By using Fourier transform infrared spectroscopy (FT-IR), X-ray diffractometry (XRD), and scanning electron microscopy (SEM) to analyze the resulting membranes, it was found that the ENPs and the chitosan-collagen composite membranes were highly compatible. Thermal properties (TG, DTG and DSC) were employed to evaluate the changes in the structural and physical properties which reached 384.94 °C, and a residual mass of 4.21 ± 0.13%. The ENPs loaded membranes exhibited marginally improved antioxidant and microbial growth inhibitory activities reaching 57.29 ± 2.77% and 10.33 ± 0.65 mm respectively. Additionally, the respective protease employed for the degradation studies was successfully expressed in Pichia pastoris (GS115) host cells, with functional pH and temperature optima between pH 4.0–5.0 and 60 °C respectively, and specific activity of 8408.9 ± 305.6 U/mg. It also exhibited enhanced specificity to its substrates upon collagen, chitosan, Bovine serum albumin (BSA), casein and casein sodium salt degradation with specific activities of 1477 ± 99.1, 1177 ± 103, and 1051.6 ± 60.7 U/mg respectively. Furthermore, the composite membranes showed excellent biodegradability by the 6th day in a natural environment treated with the aspartic protease from Aspergillus fumigatus (AfAP). Thus, the developed nanocomposite membranes from chitosan/collagen exhibited great potential and can well mimic the functions of a new generation of biodegradable and sustainable membranes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Ottone C, Romero O, Aburto C, Illanes A, Wilson L (2020) Biocatalysis in the winemaking industry: Challenges and opportunities for immobilized enzymes. Compr Rev Food Sci Food Saf 19(2):595–621. https://doi.org/10.1111/1541-4337.12538

    Article  CAS  PubMed  Google Scholar 

  2. Benucci I, Lombardelli C, Cacciotti I, Esti M (2020) Papain covalently immobilized on chitosan–clay nanocomposite films: application in synthetic and real white wine. Nanomaterials 10(9):1622–1632. https://doi.org/10.3390/nano10091622

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Ayyub OB, Kofinas P (2015) Enzyme induced stiffening of nanoparticle–hydrogel composites with structural color. ACS Nano 9(8):8004–8011. https://doi.org/10.1021/acsnano.5b01514

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Gurumallesh P, Alagu K, Ramakrishnan B, Muthusamy S (2019) A systematic reconsideration on proteases. Int J Biol Macromol 128:254–267. https://doi.org/10.1016/j.ijbiomac.2019.01.081

    Article  CAS  PubMed  Google Scholar 

  5. Guo Y, Tu T, Yuan P, Wang Y, Ren Y, Yao B et al (2019) High-level expression and characterization of a novel aspartic protease from Talaromyces leycettanus JCM12802 and its potential application in juice clarification. Food Chem 281:197–203. https://doi.org/10.1016/j.foodchem.2018.12.096

    Article  CAS  PubMed  Google Scholar 

  6. Sun Q, Chen F, Geng F, Luo Y, Gong S, Jiang Z (2018) A novel aspartic protease from Rhizomucor miehei expressed in Pichia pastoris and its application on meat tenderization and preparation of turtle peptides. Food Chem 245:570–577. https://doi.org/10.1016/j.foodchem.2017.10.113

    Article  CAS  PubMed  Google Scholar 

  7. Duarte AWF, Dos Santos JA, Vianna MV, Vieira JMF, Mallagutti VH, Inforsato FJ et al (2018) Cold-adapted enzymes produced by fungi from terrestrial and marine Antarctic environments. Crit Rev Biotechnol 38(4):600–619. https://doi.org/10.1080/07388551.2017.1379468

    Article  CAS  PubMed  Google Scholar 

  8. Machado S, Feitosa V, Pillaca-Pullo O, Lario L, Sette L, Pessoa A Jr et al (2022) Effects of Oxygen transference on protease production by Rhodotorula mucilaginosa CBMAI 1528 in a stirred Tank Bioreactor. Bioengineering 9(11):694. https://doi.org/10.3390/bioengineering9110694

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Vesth TC, Nybo JL, Theobald S, Frisvad JC, Larsen TO, Nielsen KF et al (2018) Investigation of inter-and intraspecies variation through genome sequencing of aspergillus section nigri. Nat Genet 50:1688–1695. https://doi.org/10.1038/s41588-018-0246-1

    Article  CAS  PubMed  Google Scholar 

  10. Park H-S, Jun S-C, Han K-H, Hong S-B, Yu J-H (2017) Diversity, application, and synthetic biology of industrially important aspergillus fungi. Adv Appl Microbiol 100:161–202. https://doi.org/10.1016/bs.aambs.2017.03.001

    Article  CAS  PubMed  Google Scholar 

  11. Meyer V, Basenko EY, Benz JP, Braus GH, Caddick MX, Csukai M et al (2020) Growing a circular economy with fungal biotechnology: a white paper. Fungal biology and biotechnology 7(1):1–23. https://doi.org/0.1186/s40694-020-00095-z

  12. Leceta I, Guerrero P, De La Caba K (2013) Functional properties of chitosan-based films. Carbohydr Polym 93(1):339–346. https://doi.org/10.1016/j.carbpol.2012.04.031

    Article  CAS  PubMed  Google Scholar 

  13. Kumar S, Ye F, Dobretsov S, Dutta J (2019) Chitosan nanocomposite coatings for food, paints, and water treatment applications. Appl Sci 9(12):2409–2435. https://doi.org/10.3390/app9122409

    Article  CAS  Google Scholar 

  14. Verma ML, Kumar S, Das A, Randhawa JS, Chamundeeswari M (2020) Chitin and chitosan-based support materials for enzyme immobilization and biotechnological applications. Environ Chem Lett 18(2):315–323. https://doi.org/10.1007/s10311-019-00942-5

    Article  CAS  Google Scholar 

  15. Hosseinnejad M, Jafari SM (2016) Evaluation of different factors affecting antimicrobial properties of chitosan. International Journal of Biological Macromolecules 85:467–475. Int J Biol Macromol 85:467–475. https://doi.org/10.1016/j.ijbiomac.2016.01.022

  16. Verlee A, Mincke S, Stevens CV (2017) Recent developments in antibacterial and antifungal chitosan and its derivatives. Carbohydr Polym 164:268–283. https://doi.org/10.1016/j.carbpol.2017.02.001

    Article  CAS  PubMed  Google Scholar 

  17. Kuorwel KK, Cran MJ, Orbell JD, Buddhadasa S, Bigger SW (2015) Review of mechanical properties, migration, and potential applications in active food packaging systems containing nanoclays and nanosilver. Compr Rev Food Sci Food Saf 14(4):411–430. https://doi.org/10.1111/1541-4337.12139

    Article  CAS  Google Scholar 

  18. Huang D, Niu L, Li J, Du J, Wei Y, Hu Y et al (2018) Reinforced chitosan membranes by microspheres for guided bone regeneration. J Mech Behav Biomed Mater 81:195–201. https://doi.org/10.1016/j.jmbbm.2018.03.006

    Article  CAS  PubMed  Google Scholar 

  19. Liu J, Fang Q, Yu X, Wan Y, Xiao B (2018) Chitosan-based nanofibrous membrane unit with gradient compositional and structural features for mimicking calcified layer in osteochondral matrix. Int J Mol Sci 19(8):2330–2347. https://doi.org/10.3390/ijms19082330

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Jo Y-Y, Oh J-H (2018) New resorbable membrane materials for guided bone regeneration. Appl Sci 8(11):2157–2166. https://doi.org/10.3390/app8112157

    Article  CAS  Google Scholar 

  21. Ma S, Adayi A, Liu Z, Li M, Wu M, Xiao L et al (2016) Asymmetric collagen/chitosan membrane containing minocycline-loaded chitosan nanoparticles for guided bone regeneration. Sci Rep 6(1):1–10. https://doi.org/10.1038/srep31822

    Article  CAS  Google Scholar 

  22. Sundaram G, Ramakrishnan T, Parthasarathy H, Raja M, Raj S (2018) Fenugreek, diabetes, and periodontal disease: a cross-link of sorts! J Indian Soci Periodontol 22(2):122–126. https://doi.org/10.4103/jisp.jisp_322_17

    Article  Google Scholar 

  23. Gil CS, Gil VS, Carvalho SM, Silva GR, Magalhães JT, Oréfice RL et al (2016) Recycled collagen films as biomaterials for controlled drug delivery. New J Chem 40(10):8502–8510. https://doi.org/10.1039/C6NJ00674D

    Article  CAS  Google Scholar 

  24. Tang M, Ding S, Min X, Jiao Y, Li L, Li H et al (2016) Collagen films with stabilized liquid crystalline phases and concerns on osteoblast behaviors. Mater Sci Eng: C 58:977–985. https://doi.org/10.1016/j.msec.2015.09.058

    Article  CAS  Google Scholar 

  25. Gopinath D, Ahmed MR, Gomathi K, Chitra K, Sehgal P, Jayakumar R (2004) Dermal wound healing processes with curcumin incorporated collagen films. Biomaterials 25(10):1911–1917. https://doi.org/10.1016/S0142-9612(03)00625-2

    Article  CAS  PubMed  Google Scholar 

  26. Pawelec K, Best S, Cameron R (2016) Collagen: a network for regenerative medicine. Journal of Materials Chemistry B 4(40):6484–6496. J Mater Chem B 4(40):6484–6496. https://doi.org/10.1039/C6TB00807K

  27. Andonegi M, Las Heras K, Santos-Vizcaíno E, Igartua M, Hernandez RM, de la Caba K et al (2020) Structure-properties relationship of chitosan/collagen films with potential for biomedical applications. Carbohydr Polym 237:116159. https://doi.org/10.1016/j.carbpol.2020.116159

    Article  CAS  PubMed  Google Scholar 

  28. Perez-Puyana V, Jiménez-Rosado M, Romero A, Guerrero A (2019) Crosslinking of hybrid scaffolds produced from collagen and chitosan. Int J Biol Macromol 139:262–269. https://doi.org/10.1016/j.ijbiomac.2019.07.198

    Article  CAS  PubMed  Google Scholar 

  29. Yadav N, Narang J, Chhillar AK, Pundir CS (2018) Preparation, characterization, and application of enzyme nanoparticles. Methods in Enzymology. Elsevier; p. 171–196. https://doi.org/10.1016/bs.mie.2018.07.001

  30. Becerra J, Rodriguez M, Leal D, Noris-Suarez K, Gonzalez G (2022) Chitosan-collagen-hydroxyapatite membranes for tissue engineering. J Mater Sci: Mater Med 33(2):1–16. https://doi.org/10.1007/s10856-022-06643-w

    Article  CAS  Google Scholar 

  31. Yang W, Qi G, Kenny JM, Puglia D, Ma P (2020) Effect of cellulose nanocrystals and lignin nanoparticles on mechanical, antioxidant and water vapour barrier properties of glutaraldehyde crosslinked PVA films. Polymers 12(6):1364–1378. https://doi.org/10.3390/polym12061364

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Fang Y, Fu J, Tao C, Liu P, Cui B (2020) Mechanical properties and antibacterial activities of novel starch-based composite films incorporated with salicylic acid. Int J Biol Macromol 155:1350–1358. https://doi.org/10.1016/j.ijbiomac.2019.11.110

    Article  CAS  PubMed  Google Scholar 

  33. Domenek S, Louaifi A, Guinault A, Baumberger S (2013) Potential of lignins as antioxidant additive in active biodegradable packaging materials. J Polym Environ 21(3):692–701. https://doi.org/10.1007/s10924-013-0570-6

    Article  CAS  Google Scholar 

  34. Zhao Y, Du J, Zhou H, Zhou S, Lv Y, Cheng Y et al (2022) Biodegradable intelligent film for food preservation and real-time visual detection of food freshness. Food Hydrocolloids 129:107665. https://doi.org/10.1016/j.foodhyd.2022.107665

    Article  CAS  Google Scholar 

  35. Bam P, Bhatta A, Krishnamoorthy G (2019) Design of biostable scaffold based on collagen crosslinked by dialdehyde chitosan with presence of gallic acid. Int J Biol Macromol 130:836–844. https://doi.org/10.1016/j.ijbiomac.2019.03.017

    Article  CAS  PubMed  Google Scholar 

  36. Dorcheh SK, Vahabi K (2016) Biosynthesis of Nanoparticles by Fungi: Large-Scale Production. In Fungal Metabolites; Mérillon, J.M., Ramawat, K.G., Eds. Switzerland: Springer: Cham; https://doi.org/10.1007/978-3-319-19456-1_8-1

  37. Stromer BS, Kumar CV (2017) White-Emitting protein nanoparticles for cell‐entry and pH sensing. Adv Funct Mater 27(3):1603874. https://doi.org/10.1002/adfm.201603874

    Article  CAS  Google Scholar 

  38. Chauhan N, Kumar A, Pundir C (2014) Construction of an uricase nanoparticles modified au electrode for amperometric determination of uric acid. Appl Biochem Biotechnol 174(4):1683–1694. https://doi.org/10.1007/s12010-014-1097-6

    Article  CAS  PubMed  Google Scholar 

  39. Socrates R, Prymak O, Loza K, Sakthivel N, Rajaram A, Epple M et al (2019) Biomimetic fabrication of mineralized composite films of nanosilver loaded native fibrillar collagen and chitosan. Mater Sci Eng: C 99:357–366. https://doi.org/10.1016/j.msec.2019.01.101

    Article  CAS  Google Scholar 

  40. Yang X, Cong H, Song J, Zhang J (2013) Heterologous expression of an aspartic protease gene from biocontrol fungus Trichoderma asperellum in Pichia pastoris. World J Microbiol Biotechnol 29:2087–2094. https://doi.org/10.1007/s11274-013-1373-6

    Article  CAS  PubMed  Google Scholar 

  41. Wang S, Zhang P, Xue Y, Yan Q, Li X, Jiang Z (2021) Characterization of a novel aspartic protease from Rhizomucor miehei expressed in Aspergillus niger and its application in production of ACE-inhibitory peptides. Foods 10(12):2949. https://doi.org/10.3390/foods10122949

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Song P, Cheng L, Tian K, Zhang M, Mchunu NP, Niu D et al (2020) Biochemical characterization of two new Aspergillus niger aspartic proteases. 3 Biotech 10:1–9. https://doi.org/10.1007/s13205-020-02292-4

    Article  Google Scholar 

  43. da Silva RR, de Oliveira LCG, Juliano MA, Juliano L, de Oliveira AH, Rosa JC et al (2017) Biochemical and milk-clotting properties and mapping of catalytic subsites of an extracellular aspartic peptidase from basidiomycete fungus phanerochaete chrysosporium. Food Chem 225:45–54. https://doi.org/10.1016/j.foodchem.2017.01.009

    Article  CAS  PubMed  Google Scholar 

  44. Theron LW, Bely M, Divol B (2017) Characterisation of the enzymatic properties of MpAPr1, an aspartic protease secreted by the wine yeast Metschnikowia pulcherrima. J Sci Food Agric 97:3584–3593. https://doi.org/10.1002/jsfa.8217

    Article  CAS  PubMed  Google Scholar 

  45. Theron LW, Divol B (2014) Microbial aspartic proteases: current and potential applications in industry. Appl Microbiol Biotechnol 98:8853–8868. https://doi.org/10.1007/s00253-014-6035-6

    Article  CAS  PubMed  Google Scholar 

  46. Guo Y, Li X, Jia W, Huang F, Liu Y, Zhang C (2021) Characterization of an intracellular aspartic protease (PsAPA) from Penicillium sp. XT7 and its application in collagen extraction. Food Chem 345:128834. https://doi.org/10.1016/j.foodchem.2020.128834

    Article  CAS  PubMed  Google Scholar 

  47. Souza PM, Werneck G, Aliakbarian B, Siqueira F, Ferreira Filho EX, Perego P et al (2017) Production, purification and characterization of an aspartic protease from Aspergillus foetidus. Food Chem Toxicol 109:1103–1110. https://doi.org/10.1016/j.fct.2017.03.055

    Article  CAS  PubMed  Google Scholar 

  48. Deepthi S, Sundaram MN, Kadavan JD, Jayakumar R (2016) Layered chitosan-collagen hydrogel/aligned PLLA nanofiber construct for flexor tendon regeneration. Carbohydr Polym 153:492–500. https://doi.org/10.1016/j.carbpol.2016.07.124

    Article  CAS  PubMed  Google Scholar 

  49. Riaz T, Zeeshan R, Zarif F, Ilyas K, Muhammad N, Safi SZ et al (2018) FTIR analysis of natural and synthetic collagen. Appl Spectrosc Rev 53(9):703–746. https://doi.org/10.1080/05704928.2018.1426595

    Article  CAS  Google Scholar 

  50. Wang X, Wang G, Liu L, Zhang D (2016) The mechanism of a chitosan-collagen composite film used as biomaterial support for MC3T3-E1 cell differentiation. Sci Rep 6(1):1–8. https://doi.org/10.1038/srep39322

    Article  CAS  Google Scholar 

  51. Sionkowska A, Wisniewski M, Skopinska J, Kennedy CJ, Wess TJ (2004) Molecular interactions in collagen and chitosan blends. Biomaterials 25(5):795–801. https://doi.org/10.1016/S0142-9612(03)00595-7

    Article  CAS  PubMed  Google Scholar 

  52. Leceta I, Peñalba M, Arana P, Guerrero P, De La Caba K (2015) Ageing of chitosan films: Effect of storage time on structure and optical, barrier and mechanical properties. Eur Polym J 66:170–179. https://doi.org/10.1016/j.eurpolymj.2015.02.015

    Article  CAS  Google Scholar 

  53. Valencia GA, Luciano CG, Lourenço RV, Bittante AMQB, do, Amaral Sobral PJ (2019) Morphological and physical properties of nano-biocomposite films based on collagen loaded with laponite®. Food Packag Shelf Life 19:24–30. https://doi.org/10.1016/j.fpsl.2018.11.013

  54. Kanth S, Puttaiahgowda YM, Varadavenkatesan T, Pandey S (2022) One-Pot Synthesis of Polyvinyl Alcohol-Piperazine Cross-Linked Polymer for Antibacterial Applications. J Polymers Environ 1–14. https://doi.org/10.1007/s10924-022-02553-8

  55. Kaczmarek B, Sionkowska A, Skopinska-Wisniewska J (2018) Influence of glycosaminoglycans on the properties of thin films based on chitosan/collagen blends. J Mech Behav Biomed Mater 80:189–193. https://doi.org/10.1016/j.jmbbm.2018.02.006

    Article  CAS  PubMed  Google Scholar 

  56. Vafania B, Fathi M, Soleimanian-Zad S (2019) Nanoencapsulation of thyme essential oil in chitosan-gelatin nanofibers by nozzle-less electrospinning and their application to reduce nitrite in sausages. Food Bioprod Process 116:240–248. https://doi.org/10.1016/j.fbp.2019.06.001

    Article  CAS  Google Scholar 

  57. Bozec L, Odlyha M (2011) Thermal denaturation studies of collagen by microthermal analysis and atomic force microscopy. Biophys J 101(1):228–236. https://doi.org/10.1016/j.bpj.2011.04.033

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Ma D, Jiang Y, Ahmed S, Qin W, Liu Y (2020) Antilisterial and physical properties of polysaccharide-collagen films embedded with cell-free supernatant of Lactococcus lactis. Int J Biol Macromol 145:1031–1038. https://doi.org/10.1016/j.ijbiomac.2019.09.195

    Article  CAS  PubMed  Google Scholar 

  59. Chang X, Hou Y, Liu Q, Hu Z, Xie Q, Shan Y et al (2021) Physicochemical and antimicrobial properties of chitosan composite films incorporated with glycerol monolaurate and nano-TiO2. Food Hydrocolloids 119:106846. https://doi.org/10.1016/j.foodhyd.2021.106846

    Article  CAS  Google Scholar 

  60. Zhang W, Shen J, Gao P, Jiang Q, Xia W (2022) Sustainable chitosan films containing a betaine-based deep eutectic solvent and lignin: Physicochemical, antioxidant, and antimicrobial properties. Food Hydrocolloids 129:107656. https://doi.org/10.1016/j.foodhyd.2022.107656

    Article  CAS  Google Scholar 

  61. Zhang W, Jiang Q, Shen J, Gao P, Yu D, Xu Y et al (2022) The role of organic acid structures in changes of physicochemical and antioxidant properties of crosslinked chitosan films. Food Packag Shelf Life 31:100792. https://doi.org/10.1016/j.fpsl.2021.100792

    Article  CAS  Google Scholar 

  62. Zhou X, Liu X, Liao W, Wang Q, Xia W (2022) Chitosan/bacterial cellulose films incorporated with tea polyphenol nanoliposomes for silver carp preservation. Carbohydr Polym 297:120048. https://doi.org/10.1016/j.carbpol.2022.120048

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This study was financially supported by the Jiangsu Excellent Postdoctoral Project Fund (2022ZB681), the Jiangsu Agricultural Science and Technology Innovation Fund (CX(20)2029), the Key Research and Development Program (Modern Agriculture) of Jiangsu Province (BE2019358), and the Jiangsu University of Science and Technology Postdoctoral Research Fund (1062152103).

Author information

Authors and Affiliations

Authors

Contributions

JW: Conceptualization, Fund acquisition, Supervision, Writing-review & editing, Project administration and Resources. SY: Conceptualization, Supervision, Writing-review & editing. RAH: Performed the major experiments, Data curation, Formal analysis, Writing – original draft, Writing – review & editing. ZX: Data curation. EA: Writing-review & editing. WXZ: Data curation. MA: Writing – review & editing. All authors reviewed the results and approved the final version of the manuscript.

Corresponding author

Correspondence to Jun Wang.

Ethics declarations

Conflict of Interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic Supplementary Material

Below is the link to the electronic supplementary material.

Supplementary Material 1

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Herman, R.A., Zhu, X., Ayepa, E. et al. Fabrication of Biofunctionalized Protease-Based Chitosan/Collagen Composite Membranes and Efficient Biodegradation Using Recombinant Aspergillus Fumigatus. J Polym Environ 31, 3149–3166 (2023). https://doi.org/10.1007/s10924-023-02809-x

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10924-023-02809-x

Keywords

Navigation