Skip to main content

Advertisement

Log in

The Sorption of Amoxicillin on Engineered Polyethylene Terephthalate Microplastics

  • Original Paper
  • Published:
Journal of Polymers and the Environment Aims and scope Submit manuscript

Abstract

The adsorption studies of contaminants on microplastics (MPs) collected from the marine environment are very hard to carry out mainly due to the difficulties associated with both to filtration of MPs and separation from biofilm and organic matrices. In this work, MPs were produced by a top-down protocol from polyethylene terephthalate (PET) bottles collected on the beach, thus already aged in the natural environment, and compared with engineered MPs obtained from PET pellets. Both types of MPs (size < 150 μm) were used to study the adsorption of amoxicillin, which is one of the most widely consumed antibiotics in the world and is found unchanged in the aquatic environment. The results of sorption kinetics and isotherm tests indicated that aged MPs absorbed a higher antibiotic content than unaged ones since the two kinds of microplastics had different specific surface areas. The experimental results were explained by analysing the thermodynamic affinity among amoxicillin and PET MPs and comparing it with several pharmaceuticals and other microplastics by evaluating Hansen’s solubility parameters (HSPs), which account for dispersive, polarizable and hydrogen bonding contributions to the overall cohesive energy of a compound. The possible interaction mechanism among amoxicillin and PET MPs, based on hydrogen bond interactions among the antibiotic and the ester groups of the polymer, was hypothesised. The results of adsorption tests demonstrated that PET MPs can be pollutant carriers with potential long-range transport in the aquatic environment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Plastics - the facts 2019. Plast Eur 2019 n.d. https://www.plasticseurope.org/application/files/9715/7129/9584/FINAL_web_version_Plastics_the_facts2019_14102019.pdf. (accessed 5 Dec 2020).

  2. Issac MN, Kandasubramanian B (2021) Effect of microplastics in water and aquatic systems. Environ Sci Pollut Res 28:19544–19562

    Article  CAS  Google Scholar 

  3. Gündogdu S, Rathod N, Hassoun A, Jamroz E, Kulawik P, Gokbulut C et al (2022) The impact of nano/micro-plastics toxicity on seafood quality and human health facts and gaps. Crit Rev Food Sci Nutr. https://doi.org/10.1080/10408398.2022.2033684

    Article  PubMed  Google Scholar 

  4. Auta HS, Emenike CU, Fauziah SH (2017) Distribution and importance of microplastics in the marine environment: a review of the sources, fate, effects, and potential solutions. Environ Int 102:165–176

    Article  CAS  PubMed  Google Scholar 

  5. Thompson RC (2006) Plastic debris in the marine environment: consequences and solutions. Mar Nat Conserv Eur 193:107–115

    Google Scholar 

  6. Hidalgo-Ruz V, Gutow L, Thompson RC, Thiel M (2012) Microplastics in the marine environment: a review of the methods used for identification and quantification. Environ Sci Technol 46:3060–3075

    Article  CAS  PubMed  Google Scholar 

  7. Cole M, Lindeque P, Halsband C, Galloway TS (2011) Microplastics as contaminants in the marine environment: a review. Mar Pollut Bull 62:2588–2597

    Article  CAS  PubMed  Google Scholar 

  8. De Gisi S, Gadaleta G, Gorrasi G, La Mantia FP, Notarnicola M, Sorrentino A (2022) The role of (bio) degradability on the management of petrochemical and bio-based plastic waste. J Environ Manage 310:114769

    Article  PubMed  Google Scholar 

  9. Kida M, Koszelnik P (2021) Investigation of the presence and possible migration from microplastics of phthalic acid esters and polycyclic aromatic hydrocarbons. J Polym Environ 29:599–611

    Article  CAS  Google Scholar 

  10. Rodrigues MO, Abrantes N, Gonçalves FJM, Nogueira H, Marques JC, Gonçalves AMM (2018) Spatial and temporal distribution of microplastics in water and sediments of a freshwater system (Antuã River, Portugal). Sci Total Environ 633:1549–1559

    Article  CAS  PubMed  Google Scholar 

  11. Nikpay M (2022) Wastewater fines influence the adsorption behavior of pollutants onto microplastics. J Polym Environ 30:776–783

    Article  CAS  Google Scholar 

  12. Zhang S, Yang X, Gertsen H, Peters P, Salánki T, Geissen V (2018) A simple method for the extraction and identification of light density microplastics from soil. Sci Total Environ 616:1056–1065

    Article  PubMed  Google Scholar 

  13. Ruggero F, Gori R, Lubello C (2020) Methodologies for microplastics recovery and identification in heterogeneous solid matrices: a review. J Polym Environ 28:739–748

    Article  CAS  Google Scholar 

  14. Abbasi S, Keshavarzi B, Moore F, Turner A, Kelly FJ, Dominguez AO et al (2019) Distribution and potential health impacts of microplastics and microrubbers in air and street dusts from Asaluyeh County. Iran Environ Pollut 244:153–164

    Article  CAS  PubMed  Google Scholar 

  15. Kosuth M, Mason SA, Wattenberg EV (2018) Anthropogenic contamination of tap water, beer, and sea salt. PLoS ONE 13:e0194970

    Article  PubMed  PubMed Central  Google Scholar 

  16. Eriksen M, Lebreton LCM, Carson HS, Thiel M, Moore CJ, Borerro JC et al (2014) Plastic pollution in the world’s oceans: more than 5 trillion plastic pieces weighing over 250,000 tons afloat at sea. PLoS ONE 9:e111913

    Article  PubMed  PubMed Central  Google Scholar 

  17. Andrady AL (2011) Microplastics in the marine environment. Mar Pollut Bull 62:1596–1605

    Article  CAS  PubMed  Google Scholar 

  18. Wagner M, Scherer C, Alvarez-Muñoz D, Brennholt N, Bourrain X, Buchinger S et al (2014) Microplastics in freshwater ecosystems: what we know and what we need to know. Environ Sci Eur 26:1–9

    Article  Google Scholar 

  19. Ajith N, Arumugam S, Parthasarathy S, Manupoori S, Janakiraman S (2020) Global distribution of microplastics and its impact on marine environment—a review. Environ Sci Pollut Res 27:25970–25986

    Article  Google Scholar 

  20. Prata JC, da Costa JP, Lopes I, Duarte AC, Rocha-Santos T (2020) Environmental exposure to microplastics: an overview on possible human health effects. Sci Total Environ 702:134455

    Article  CAS  PubMed  Google Scholar 

  21. Carr SA, Liu J, Tesoro AG (2016) Transport and fate of microplastic particles in wastewater treatment plants. Water Res 91:174–182

    Article  CAS  PubMed  Google Scholar 

  22. Bond T, Ferrandiz-Mas V, Felipe-Sotelo M, Van Sebille E (2018) The occurrence and degradation of aquatic plastic litter based on polymer physicochemical properties: a review. Crit Rev Environ Sci Technol 48:685–722

    Article  Google Scholar 

  23. Lionetto F, Corcione CE, Rizzo A, Maffezzoli A (2021) Production and characterization of polyethylene terephthalate nanoparticles. Polymers (Basel) 13:3745

    Article  CAS  PubMed  Google Scholar 

  24. Volpe V, Lanzillo MS, Molaro A, Affinita G, Pantani R (2022) Characterization of recycled/virgin polyethylene terephthalate composite reinforced with glass fiber for automotive applications. J Compos Sci 6:59

    Article  CAS  Google Scholar 

  25. Saygin H, Baysal A (2021) Insights into the degradation behavior of submicroplastics by Klebsiella pneumoniae. J Polym Environ 29:958–966

    Article  CAS  Google Scholar 

  26. Burns EE, Boxall ABA (2018) Microplastics in the aquatic environment: evidence for or against adverse impacts and major knowledge gaps. Environ Toxicol Chem 37:2776–2796

    Article  CAS  PubMed  Google Scholar 

  27. Kooi M, Koelmans AA (2019) Simplifying microplastic via continuous probability distributions for size, shape, and density. Environ Sci Technol Lett 6:551–557

    Article  CAS  Google Scholar 

  28. Murphy F, Ewins C, Carbonnier F, Quinn B (2016) Wastewater treatment works (WwTW) as a source of microplastics in the aquatic environment. Environ Sci Technol 50:5800–5808

    Article  CAS  PubMed  Google Scholar 

  29. Long Z, Pan Z, Wang W, Ren J, Yu X, Lin L et al (2019) Microplastic abundance, characteristics, and removal in wastewater treatment plants in a coastal city of China. Water Res 155:255–265

    Article  CAS  PubMed  Google Scholar 

  30. Wolff S, Kerpen J, Prediger J, Barkmann L, Müller L (2019) Determination of the microplastics emission in the effluent of a municipal waste water treatment plant using Raman microspectroscopy. Water Res X 2:100014

    Article  CAS  PubMed  Google Scholar 

  31. Schernewski G, Radtke H, Hauk R, Baresel C, Olshammar M, Osinski R et al (2020) Transport and behavior of microplastics emissions from urban sources in the Baltic Sea. Front Environ Sci 8:579361

    Article  Google Scholar 

  32. Nolasco ME, Lemos VAS, López G, Soares SA, Feitosa JPM, Araújo BS et al (2022) Morphology, Chemical Characterization and Sources of Microplastics in a Coastal City in the Equatorial Zone with Diverse Anthropogenic Activities (Fortaleza city, Brazil). J Polym Environ 30:2862–2874

    Article  CAS  Google Scholar 

  33. Teuten EL, Rowland SJ, Galloway TS, Thompson RC (2007) Potential for plastics to transport hydrophobic contaminants. Environ Sci Technol 41:7759–7764

    Article  CAS  PubMed  Google Scholar 

  34. Antunes JC, Frias JGL, Micaelo AC, Sobral P (2013) Resin pellets from beaches of the Portuguese coast and adsorbed persistent organic pollutants. Estuar Coast Shelf Sci 130:62–69

    Article  CAS  Google Scholar 

  35. Tourinho PS, Kočí V, Loureiro S, van Gestel CAM (2019) Partitioning of chemical contaminants to microplastics: Sorption mechanisms, environmental distribution and effects on toxicity and bioaccumulation. Environ Pollut 252:1246–1256

    Article  CAS  PubMed  Google Scholar 

  36. Lionetto F, Esposito CC (2021) An overview of the sorption studies of contaminants on poly (Ethylene Terephthalate) microplastics in the marine environment. J Mar Sci Eng 9:445

    Article  Google Scholar 

  37. Baysal A, Saygin H (2022) Co-occurence of antibiotics and micro (nano) plastics: a systematic review between 2016–2021. J Environ Sci Heal Part A 57(7):1–21

    Article  Google Scholar 

  38. Wang F, Wong CS, Chen D, Lu X, Wang F, Zeng EY (2018) Interaction of toxic chemicals with microplastics: a critical review. Water Res 139:208–219

    Article  CAS  PubMed  Google Scholar 

  39. Teuten EL, Saquing JM, Knappe DRU, Barlaz MA, Jonsson S, Björn A et al (2009) Transport and release of chemicals from plastics to the environment and to wildlife. Philos Trans R Soc B Biol Sci 364:2027–2045

    Article  CAS  Google Scholar 

  40. Ma Y, Huang A, Cao S, Sun F, Wang L, Guo H et al (2016) Effects of nanoplastics and microplastics on toxicity, bioaccumulation, and environmental fate of phenanthrene in fresh water. Environ Pollut 219:166–173

    Article  CAS  PubMed  Google Scholar 

  41. Deng Y, Zhang Y, Qiao R, Bonilla MM, Yang X, Ren H et al (2018) Evidence that microplastics aggravate the toxicity of organophosphorus flame retardants in mice (Mus musculus). J Hazard Mater 357:348–354

    Article  CAS  PubMed  Google Scholar 

  42. Polianciuc SI, Gurzău AE, Kiss B, Ştefan MG, Loghin F (2020) Antibiotics in the environment: causes and consequences. Med Pharm Reports 93:231

    Google Scholar 

  43. Watkinson AJ, Murby EJ, Kolpin DW, Costanzo SD (2009) The occurrence of antibiotics in an urban watershed: from wastewater to drinking water. Sci Total Environ 407:2711–2723

    Article  CAS  PubMed  Google Scholar 

  44. World Health Organization (2018) WHO report on surveillance of antibiotic consumption: 2016–2018 early implementation. World Health Organization, Geneva

    Google Scholar 

  45. Elizalde-Velázquez A, Gómez-Oliván LM, Galar-Martínez M, Islas-Flores H, Dublán-García O, SanJuan-Reyes N (2016) Amoxicillin in the aquatic environment, its fate and environmental risk. Environ Heal Risk-Hazardous Factors to Living Species 1:247–267

    Google Scholar 

  46. Kaur SP, Rao R, Nanda S (2011) Amoxicillin: a broad spectrum antibiotic. Int J Pharm Pharm Sci 3:30–37

    CAS  Google Scholar 

  47. Mahmodi Sheikh Sarmast Z, Sedaghat S, Derakhshi P, Azar PA (2022) Facile fabrication of silver nanoparticles grafted with Fe3O4-chitosan for efficient removal of amoxicillin from aqueous solution: application of central composite design. J Polym Environ 30:2990–3004

    Article  CAS  Google Scholar 

  48. Spataro F, Ademollo N, Pescatore T, Rauseo J, Patrolecco L (2019) Antibiotic residues and endocrine disrupting compounds in municipal wastewater treatment plants in Rome. Italy Microchem J 148:634–642

    Article  CAS  Google Scholar 

  49. Mutiyar PK, Mittal AK (2013) Occurrences and fate of an antibiotic amoxicillin in extended aeration-based sewage treatment plant in Delhi, India: a case study of emerging pollutant. Desalin Water Treat 51:6158–6164

    Article  CAS  Google Scholar 

  50. Aydin E, Talinli I (2013) Analysis, occurrence and fate of commonly used pharmaceuticals and hormones in the Buyukcekmece Watershed. Turkey Chemosphere 90:2004–2012

    Article  CAS  PubMed  Google Scholar 

  51. Azanu D, Styrishave B, Darko G, Weisser JJ, Abaidoo RC (2018) Occurrence and risk assessment of antibiotics in water and lettuce in Ghana. Sci Total Environ 622:293–305

    Article  PubMed  Google Scholar 

  52. Bhagat C, Kumar M, Tyagi VK, Mohapatra PK (2020) Proclivities for prevalence and treatment of antibiotics in the ambient water: a review. Npj Clean Water 3:1–18

    Article  Google Scholar 

  53. Khasawneh OFS, Palaniandy P (2021) Occurrence and removal of pharmaceuticals in wastewater treatment plants. Process Saf Environ Prot 150:532–556

    Article  CAS  Google Scholar 

  54. Otoo BA, Amoabeng IA, Darko G, Borquaye LS (2022) Antibiotic and analgesic residues in the environment–occurrence and ecological risk study from the Sunyani municipality, Ghana. Toxicol Reports 9:1491–1500

    Article  CAS  Google Scholar 

  55. Lee S, Kim C, Liu X, Lee S, Kho Y, Kim W-K et al (2021) Ecological risk assessment of amoxicillin, enrofloxacin, and neomycin: are their current levels in the freshwater environment safe? Toxics 9:196

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Grenni P, Ancona V, Caracciolo AB (2018) Ecological effects of antibiotics on natural ecosystems: a review. Microchem J 136:25–39

    Article  CAS  Google Scholar 

  57. Shi H, Ni J, Zheng T, Wang X, Wu C, Wang Q (2020) Remediation of wastewater contaminated by antibiotics. rev Environ Chem Lett 18:345–360

    Article  CAS  Google Scholar 

  58. Li J, Zhang K, Zhang H (2018) Adsorption of antibiotics on microplastics. Environ Pollut 237:460–467

    Article  CAS  PubMed  Google Scholar 

  59. Guo X, Pang J, Chen S, Jia H (2018) Sorption properties of tylosin on four different microplastics. Chemosphere 209:240–245

    Article  CAS  PubMed  Google Scholar 

  60. Godoy V, Martín-Lara MA, Calero M, Blázquez G (2020) The relevance of interaction of chemicals/pollutants and microplastic samples as route for transporting contaminants. Process Saf Environ Prot 138:312–323

    Article  CAS  Google Scholar 

  61. Sarkar AK, Rubin AE, Zucker I (2021) Engineered polystyrene-based microplastics of high environmental relevance. Environ Sci Technol 55:10491–10501

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Ducoli S, Federici S, Nicsanu R, Zendrini A, Marchesi C, Paolini L et al (2022) A different protein corona cloaks “true-to-life” nanoplastics with respect to synthetic polystyrene nanobeads. Environ Sci Nano 9:1414–1426

    Article  CAS  Google Scholar 

  63. Lionetto F, Lionetto MG, Mele C, Corcione CE, Bagheri S, Udayan G et al (2022) Autofluorescence of model polyethylene terephthalate nanoplastics for cell interaction studies. Nanomaterials 12:1560

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Tippa DMR, Singh N (2010) Development and validation of stability indicating HPLC method for simultaneous estimation of amoxicillin and clavulanic acid in injection. Am J Anal Chem 1:95

    Article  CAS  Google Scholar 

  65. Tewari A, Almuhtaram H, McKie MJ, Andrews RC (2022) Microplastics for use in environmental research. J Polym Environ 30:4320–4332

    Article  CAS  Google Scholar 

  66. Li J, Huang X, Hou Z, Ding T (2022) Sorption of diclofenac by polystyrene microplastics: kinetics, isotherms and particle size effects. Chemosphere 290:133311

    Article  CAS  PubMed  Google Scholar 

  67. Gozlan I, Rotstein A, Avisar D (2013) Amoxicillin-degradation products formed under controlled environmental conditions: identification and determination in the aquatic environment. Chemosphere 91:985–992

    Article  CAS  PubMed  Google Scholar 

  68. Ho YS, Wase DAJ, Forster CF (1996) Removal of lead ions from aqueous solution using sphagnum moss peat as adsorbent. WATER SA-PRETORIA- 22:219–224

    CAS  Google Scholar 

  69. Guo X, Chen C, Wang J (2019) Sorption of sulfamethoxazole onto six types of microplastics. Chemosphere 228:300–308

    Article  CAS  PubMed  Google Scholar 

  70. Li Y, Li M, Li Z, Yang L, Liu X (2019) Effects of particle size and solution chemistry on Triclosan sorption on polystyrene microplastic. Chemosphere 231:308–314

    Article  CAS  PubMed  Google Scholar 

  71. Langmuir I (1918) The adsorption of gases on plane surfaces of glass, mica and platinum. J Am Chem Soc 40:1361–1403

    Article  CAS  Google Scholar 

  72. Pathan S, Pandita N, Kishore N (2019) Acid functionalized-nanoporous carbon/MnO2 composite for removal of arsenic from aqueous medium. Arab J Chem 12:5200–5211

    Article  CAS  Google Scholar 

  73. Vadi M, Mansoorabad AO, Mohammadi M, Rostami N (2013) Investigation of Langmuir, Freundlich and Temkin adsorption isotherm of tramadol by multi-wall carbon nanotube. Asian J Chem 25:5467

    Article  CAS  Google Scholar 

  74. Gewert B, Plassmann MM, MacLeod M (2015) Pathways for degradation of plastic polymers floating in the marine environment. Environ Sci Process Impacts 17:1513–1521

    Article  CAS  PubMed  Google Scholar 

  75. Gates-Rector S, Blanton T. XRD JCPDS No. 50-2275. International Centre for Diffraction Data, 2000.

  76. Liu P, Qian L, Wang H, Zhan X, Lu K, Gu C et al (2019) New insights into the aging behavior of microplastics accelerated by advanced oxidation processes. Environ Sci Technol 53:3579–3588

    Article  CAS  PubMed  Google Scholar 

  77. Dąbrowska A, Gniadek M, Machowski P (2021) The proposal and necessity of the numerical description of nano-and microplastics’ surfaces (Plastisphere). Polymers (Basel) 13:2255

    Article  PubMed  Google Scholar 

  78. Hansen CM (2007) Hansen solubility parameters: a user’s handbook. CRC Press, Boca Raton

    Book  Google Scholar 

  79. Khansary MA, Mellat M, Saadat SH, Fasihi-Ramandi M, Kamali M, Taheri RA (2017) An enquiry on appropriate selection of polymers for preparation of polymeric nanosorbents and nanofiltration/ultrafiltration membranes for hormone micropollutants removal from water effluents. Chemosphere 168:91–99

    Article  CAS  PubMed  Google Scholar 

  80. Breitkreutz J (1998) Prediction of intestinal drug absorption properties by three-dimensional solubility parameters. Pharm Res 15:1370–1375

    Article  CAS  PubMed  Google Scholar 

  81. Kitak T, Dumičić A, Planinšek O, Šibanc R, Srčič S (2015) Determination of solubility parameters of ibuprofen and ibuprofen lysinate. Molecules 20:21549–21568

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Mosca Angelucci D, Tomei MC (2022) Uptake/release of organic contaminants by microplastics: a critical review of influencing factors, mechanistic modeling, and thermodynamic prediction methods. Crit Rev Environ Sci Technol 52:1356–1400

    Article  Google Scholar 

  83. Greenhalgh DJ, Williams AC, Timmins P, York P (1999) Solubility parameters as predictors of miscibility in solid dispersions. J Pharm Sci 88:1182–1190

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

Mr Donato Cannoletta is kindly acknowledged for the support in XRD and SEM measurements.

Funding

Francesca Lionetto acknowledges Regione Puglia for funding REFIN—Research for Innovation project “NANOPLASTIC”, project no. EF42B557, in the framework of POR PUGLIA FESR-FSE 2014/2020 projects.

Author information

Authors and Affiliations

Authors

Contributions

FL and FM run the experimental measurements; FL, CEC, SP and FM wrote the main manuscript text; FM prepared Figures 1,2,4,9; FL prepared Figures 3,5, 6,7,8,10. AM and AS validated the experimental work and revised the first draft of the manuscript. All authors reviewed the manuscript.

Corresponding author

Correspondence to Francesca Lionetto.

Ethics declarations

Conflict of interest

The authors have not disclosed any conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lionetto, F., Esposito Corcione, C., Messa, F. et al. The Sorption of Amoxicillin on Engineered Polyethylene Terephthalate Microplastics. J Polym Environ 31, 1383–1397 (2023). https://doi.org/10.1007/s10924-022-02690-0

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10924-022-02690-0

Keywords

Navigation