Skip to main content

Advertisement

Log in

Fabrication of Hydrogel-Nano Silver Based on Aloe vera/Carboxymethyl Cellulose/Tannic Acid for Antibacterial and pH-Responsive Applications

  • Original Paper
  • Published:
Journal of Polymers and the Environment Aims and scope Submit manuscript

Abstract

Hydrogels integrated with a smart function pH-responsive play an important role in wound healing. In this study, the effect of tannic acid (TA) on the properties of nanocomposite hydrogels based on carboxymethyl cellulose (CMC), Aloe vera and green synthesized silver nanoparticles (CMC/Aloe vera/AgNPs-TA) were investigated. The minimum inhibitory concentration against Escherichia coli (E. coli) and Staphylococcus aureus (S. aureus) was observed in nanocomposite hydrogels containing AgNPs and 0.5% TA (AgNPs-TA-0.5). Furthermore, the highest storage modulus at 4555.3 kPa was also observed in AgNPs-TA-0.5. The obtained nanocomposite hydrogel is pH-responsive, and the release of TA could be tuned by adjusting the pH. The cytotoxicity studies with human fibroblast cells revealed that the hydrogel is non-toxic and hence suitable for biomedical uses such as multifunctional wound dressing.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Hasan MS, Al Foisal J, Khan GMA, Jahan R, Hasanuzzaman M, Alam MS, Karim MM, Gafur MA, Khan MA, Sabur MA (2022) Microfibrillated cellulose–silver nanocomposite based PVA hydrogels and their enhanced physical, mechanical and antibacterial properties. J Polym Environ. https://doi.org/10.1007/s10924-022-02406-4

    Article  Google Scholar 

  2. Pille A, Dumont MJ, Tavares JR, Roy R (2022) The effect of foaming additives on acrylic acid/acrylamide hydrogels. J Environ Chem Eng 10(2):107310. https://doi.org/10.1016/j.jece.2022.107310

    Article  CAS  Google Scholar 

  3. Motamedi E, Motesharezedeh B, Shirinfekr A, Samar SM (2020) Synthesis and swelling behavior of environmentally friendly starch-based superabsorbent hydrogels reinforced with natural char nano/micro particles. J Environ Chem Eng 8(1):103583. https://doi.org/10.1016/j.jece.2019.103583

    Article  CAS  Google Scholar 

  4. Mir TA, Ganie SA, Ali A, Mazumdar N, Li Q (2022) Radiation synthesis of functionalized gum arabic and hydroxyethyl methacrylate hydrogels for the controlled release of niacin (Vitamin B3). J Polym Environ. https://doi.org/10.1007/s10924-022-02432-2

    Article  Google Scholar 

  5. Salama RM, Osman H, Ibrahim HM (2022) Preparation of biocompatible chitosan nanoparticles loaded with Aloe vera extract for use as a novel drug delivery mechanism to improve the antibacterial characteristics of cellulose-based fabrics. Egypt J Chem. https://doi.org/10.21608/ejchem.2021.96434.4512

    Article  Google Scholar 

  6. Boonyagul S, Banlunara W, Sangvanich P, Thunyakitpisal P (2014) Effect of acemannan, an extracted polysaccharide from Aloe vera, on BMSCs proliferation, differentiation, extracellular matrix synthesis, mineralization, and bone formation in a tooth extraction model. Odontology 102(2):310–317. https://doi.org/10.1007/s10266-012-0101-2

    Article  CAS  Google Scholar 

  7. Kotcharat P, Chuysinuan P, Thanyacharoen T, Techasakul S, Ummartyotin S (2022) Enhanced performance of Aloe vera-incorporated bacterial cellulose/polycaprolactone composite film for wound dressing applications. J Polym Environ 30(3):1151–1161. https://doi.org/10.1007/s10924-021-02262-8

    Article  CAS  Google Scholar 

  8. Dadashzadeh A, Imani R, Moghassemi S, Omidfar K, Abolfathi N (2020) Study of hybrid alginate/gelatin hydrogel-incorporated niosomal Aloe vera capable of sustained release of Aloe vera as potential skin wound dressing. Polym Bull 77(1):387–403. https://doi.org/10.1007/s00289-019-02753-8

    Article  CAS  Google Scholar 

  9. Maqsood S, Benjakul S, Balange AK (2012) Effect of tannic acid and kiam wood extract on lipid oxidation and textural properties of fish emulsion sausages during refrigerated storage. Food Chem 130(2):408–416. https://doi.org/10.1016/j.foodchem.2011.07.065

    Article  CAS  Google Scholar 

  10. Oehmcke-Hecht S, Mandl V, Naatz LT, Dühring L, Köhler J, Kreikemeyer B, Maletzki C (2020) Streptococcus gallolyticus abrogates anti-carcinogenic properties of tannic acid on low-passage colorectal carcinomas. Sci Rep 10(1):4714. https://doi.org/10.1038/s41598-020-61458-5

    Article  CAS  Google Scholar 

  11. Natarajan V, Krithica N, Madhan B, Sehgal PK (2013) Preparation and properties of tannic acid cross-linked collagen scaffold and its application in wound healing. J Biomed Mater Res Part B 101B:560–567. https://doi.org/10.1002/jbm.b.32856

    Article  CAS  Google Scholar 

  12. Liu C, Liu H, Tang K, Zhang K, Zou Z, Gao X (2020) High-strength chitin based hydrogels reinforced by tannic acid functionalized graphene for congo red adsorption. J Polym Environ 28(3):984–994. https://doi.org/10.1007/s10924-020-01663-5

    Article  CAS  Google Scholar 

  13. do Menezes MLLR, da Pires NR, da Cunha PLR, de Freitas Rosa M, de Souza BWS, de Feitosa JPA, de Souza Filho MSM (2019) Effect of tannic acid as crosslinking agent on fish skin gelatin–silver nanocomposite film. Food Pack Shelf Life 19:7–15. https://doi.org/10.1016/j.fpsl.2018.11.005

  14. de Sousa Leal A, de Araújo R, Rocha Souza G, Nunes Lopes GL, Telles Pereira S, Muálem de Moraes Alves M, Medeiros Barreto H, Menezes Carvalho AL, Pinheiro Ferreira PM, Silva D, de Amorim Carvalho FA, Dantas Lopes JA, Cunha Nunes LC (2018) In vitro bioactivity and cytotoxicity of films based on mesocarp of Orbignya sp. and carboxymethylcellulose as a tannic acid release matrix. Carbohydr Polym 201:113–121. https://doi.org/10.1016/j.carbpol.2018.08.026

  15. Ge W, Cao S, Shen F, Wang Y, Ren J, Wang X (2019) Rapid self-healing, stretchable, moldable, antioxidant and antibacterial tannic acid-cellulose nanofibril composite hydrogels. Carbohydr Polym 224:115147. https://doi.org/10.1016/j.carbpol.2019.115147

    Article  CAS  Google Scholar 

  16. Ge J, Shi X, Cai M, Wu R, Wang M (2003) A novel biodegradable antimicrobial PU foam from wattle tannin. J Appl Polym Sci 90:2756–2763. https://doi.org/10.1002/app.12928

    Article  CAS  Google Scholar 

  17. Percival SL, McCarty S, Hunt JA, Woods EJ (2014) The effects of pH on wound healing, biofilms, and antimicrobial efficacy. Wound Repair Regener 22:174–186. https://doi.org/10.1111/wrr.12125

    Article  Google Scholar 

  18. Ninan N, Forget A, Shastri VP, Voelcker NH, Blencowe A (2016) Antibacterial and anti-inflammatory ph-responsive tannic acid-carboxylated agarose composite hydrogels for wound healing. ACS Appl Mater Interfaces 8:28511–28521. https://doi.org/10.1021/acsami.6b10491

    Article  CAS  Google Scholar 

  19. Abdelgawad AM, El-Naggar ME, Elsherbiny DA, Ali S, Abdel-Aziz MS, Abdel-Monem YK (2020) Antibacterial carrageenan/cellulose nanocrystal system loaded with silver nanoparticles, prepared via solid-state technique. J Environ Chem Eng 8:104276. https://doi.org/10.1016/j.jece.2020.104276

    Article  CAS  Google Scholar 

  20. Dutta T, Ghosh NN, Das M, Adhikary R, Mandal V, Chattopadhyay AP (2020) Green synthesis of antibacterial and antifungal silver nanoparticles using Citrus limetta peel extract: experimental and theoretical studies. J Environ Chem Eng 8:104019. https://doi.org/10.1016/j.jece.2020.104019

    Article  CAS  Google Scholar 

  21. Ounkaew A, Kasemsiri P, Jetsrisuparb K, Uyama H, Hsu YI, Boonmars T, Artchayasawat A, Knijnenburg JTN, Chindaprasirt P (2020) Synthesis of nanocomposite hydrogel based carboxymethyl starch/polyvinyl alcohol/nanosilver for biomedical materials. Carbohydr Polym 248:116767. https://doi.org/10.1016/j.carbpol.2020.116767

    Article  CAS  Google Scholar 

  22. Ahmadi O, Jafarizadeh-Malmiri H, Jodeiri N (2018) Eco-friendly microwave-enhanced green synthesis of silver nanoparticles using Aloe vera leaf extract and their physico-chemical and antibacterial studies. Green Process Synth 7:231–240. https://doi.org/10.1515/gps-2017-0039

    Article  CAS  Google Scholar 

  23. Trongchuen K, Ounkaew A, Kasemsiri P, Hiziroglu S, Mongkolthanaruk W, Wannasutta R, Pongsa U, Chindaprasirt P (2018) Bioactive starch foam composite enriched with natural antioxidants from spent coffee ground and essential oil. Starch/Staerke 70:201700238. https://doi.org/10.1002/star.201700238

    Article  CAS  Google Scholar 

  24. Zhang ZY, Sun Y, Zheng YD, He W, Yang YY, Xie YJ, Feng ZX, Qiao K (2020) A biocompatible bacterial cellulose/tannic acid composite with antibacterial and anti-biofilm activities for biomedical applications. Mater Sci Eng C 106:110249. https://doi.org/10.1016/j.msec.2019.110249

    Article  CAS  Google Scholar 

  25. Shao Y, Wu C, Wu T, Yuan C, Chen S, Ding T, Ye X, Hu Y (2018) Green synthesis of sodium alginate–silver nanoparticles and their antibacterial activity. Int J Biol Macromol 111:1281–1292. https://doi.org/10.1016/j.ijbiomac.2018.01.012

    Article  CAS  Google Scholar 

  26. Tian S, Hu Y, Chen X, Liu C, Xue Y, Han B (2022) Green synthesis of silver nanoparticles using sodium alginate and tannic acid: characterization and anti-S. aureus activity. Int J Biol Macromol 195:515–522. https://doi.org/10.1016/j.ijbiomac.2021.12.031

    Article  CAS  Google Scholar 

  27. Aghamohamadi N, Sanjani NS, Majidi RF, Nasrollahi SA (2019) Preparation and characterization of Aloe vera acetate and electrospinning fibers as promising antibacterial properties materials. Mater Sci Eng C 94:445–452. https://doi.org/10.1016/j.msec.2018.09.058

    Article  CAS  Google Scholar 

  28. Baláž M, Bedlovičová Z, Daneu N, Siksa P, Sokoli L, Tkáčiková Ľ, Salayová A, Džunda R, Kováčová M, Bureš R, Bujňáková ZL (2021) Mechanochemistry as an alternative method of green synthesis of silver nanoparticles with antibacterial activity: a comparative study. Nanomaterials 11:11051139. https://doi.org/10.3390/nano11051139

    Article  CAS  Google Scholar 

  29. Ge J, Yue P, Chi J, Liang J, Gao X (2018) Formation and stability of anthocyanins-loaded nanocomplexes prepared with chitosan hydrochloride and carboxymethyl chitosan. Food Hydrocolliod 74:23–31. https://doi.org/10.1016/j.foodhyd.2017.07.029

    Article  CAS  Google Scholar 

  30. Drabczyk A, Kudłacik-Kramarczyk S, Głąb M, Kędzierska M, Jaromin A, Mierzwiński D, Tyliszczak B (2020) Physicochemical investigations of chitosan-based hydrogels containing Aloe vera designed for biomedical use. Materials 13:13143073. https://doi.org/10.3390/ma13143073

    Article  CAS  Google Scholar 

  31. Ranoszek-Soliwoda K, Tomaszewska E, Socha E, Krzyczmonik P, Ignaczak A, Orlowski P, Krzyzowska M, Celichowski G, Grobelny J (2017) The role of tannic acid and sodium citrate in the synthesis of silver nanoparticles. J Nanopart Res 19:273. https://doi.org/10.1007/s11051-017-3973-9

    Article  CAS  Google Scholar 

  32. Hong KH (2016) Preparation and properties of polyvinyl alcohol/tannic acid composite film for topical treatment application. Fibers Polym 17:1963–1968. https://doi.org/10.1007/s12221-016-6886-9

    Article  CAS  Google Scholar 

  33. Rahmani S, Ghaemi F, Khaleghi M, Haghi F (2021) Synthesis of novel silver nanocomposite hydrogels based on polyurethane/poly(ethylene glycol) via aqueous extract of oak fruit and their antibacterial and mechanical properties. Polym Compos 42:6719–6735. https://doi.org/10.1002/pc.26334

    Article  CAS  Google Scholar 

  34. Bindhu MR, Umadevi M, Esmail GA, Al-Dhabi NA, Arasu MV (2020) Green synthesis and characterization of silver nanoparticles from Moringa oleifera flower and assessment of antimicrobial and sensing properties. J Photochem Photobiol B 205:111836. https://doi.org/10.1016/j.jphotobiol.2020.111836

    Article  CAS  Google Scholar 

  35. Zhang A, Xiao Y, Das P, Zhang L, Zhang Y, Fang H, Wang L, Cao Y (2019) Synthesis, dissolution, and regeneration of silver nanoparticles stabilized by tannic acid in aqueous solution. J Nanopart Res 21:133. https://doi.org/10.1007/s11051-019-4563-9

    Article  CAS  Google Scholar 

  36. Dragan ES (2014) Design and applications of interpenetrating polymer network hydrogels, a review. Chem Eng J 243:572–590. https://doi.org/10.1016/j.cej.2014.01.065

    Article  CAS  Google Scholar 

  37. Yu S, Ji Y, Guo C, Lu D, Geng Z, Pei D, Liu Q (2021) A dual-cross-linked hydrogel based on hyaluronic acid/gelatin tethered via tannic acid: mechanical properties’ enhancement and stability control. Iran Polym J 30:307–317. https://doi.org/10.1007/s13726-020-00891-9

    Article  CAS  Google Scholar 

  38. Chen Y, Wang D, Mensaha A, Wang Q, Cai Y, Wei Q (2022) Ultrafast gelation of multifunctional hydrogel/composite based on self-catalytic Fe3+/tannic acid-cellulose nanofibers. J Colloid Interface Sci 606:1457–1468. https://doi.org/10.1016/j.jcis.2021.08.104

    Article  CAS  Google Scholar 

  39. Shi W, Kong K, Su Y, Kuss MA, Jiang X, Li X, Xie J, Duan B (2021) Tannic acid-inspired, self-healing, and dual stimuli responsive dynamic hydrogel with potent antibacterial and anti-oxidative properties. J Mater Chem B 9:7182. https://doi.org/10.1039/d1tb00156f

    Article  CAS  Google Scholar 

  40. Jing J, Liang S, Yan Y, Tian X, Li X (2019) Fabrication of hybrid hydrogels from silk fibroin and tannic acid with enhanced gelation and antibacterial activities. ACS Biomater Sci Eng 5:4601–4611. https://doi.org/10.1021/acsbiomaterials.9b00604

    Article  CAS  Google Scholar 

  41. Rabbi MA, Rahman MM, Minami H, Habib MR, Ahmad H (2020) Ag impregnated sub-micrometer crystalline jute cellulose particles: catalytic and antibacterial properties. Carbohydr Polym 233:115842. https://doi.org/10.1016/j.carbpol.2020.115842

    Article  CAS  Google Scholar 

  42. Yadollahi M, Farhoudian S, Namazi H (2015) One-pot synthesis of antibacterial chitosan/silver bio-nanocomposite hydrogel beads as drug delivery systems. Int J Biol Macromol 79:37–43. https://doi.org/10.1016/j.ijbiomac.2015.04.032

    Article  CAS  Google Scholar 

  43. You C, Han C, Wang X, Zheng Y, Li Q, Hu X, Sun H (2012) The progress of silver nanoparticles in the antibacterial mechanism, clinical application and cytotoxicity. Mol Biol Rep 39:9193–9201. https://doi.org/10.1007/s11033-012-1792-8

    Article  CAS  Google Scholar 

  44. Abdelaziz D, Hefnawy A, Al-Wakeel E, El-Fallal A, El-Sherbiny IM (2021) New biodegradable nanoparticles-in-nanofibers based membranes for guided periodontal tissue and bone regeneration with enhanced antibacterial activity. J Adv Res 28:51–62. https://doi.org/10.1016/j.jare.2020.06.014

    Article  CAS  Google Scholar 

  45. Liu W, Miao L, Li X, Xu Z (2021) Development of fluorescent probes targeting the cell wall of pathogenic bacteria. Coord Chem Rev 429:213646. https://doi.org/10.1016/j.ccr.2020.213646

    Article  CAS  Google Scholar 

  46. Saravanakumar K, Sriram B, Sathiyaseelan A, Mariadoss AVA, Hu X, Han KS, Vishnupriya V, Mubarak Ali D, Wang MH (2021) Synthesis, characterization, and cytotoxicity of starch-encapsulated biogenic silver nanoparticle and its improved anti-bacterial activity. Int J Biol Macromol 182:1409–1418. https://doi.org/10.1016/j.ijbiomac.2021.05.036

    Article  CAS  Google Scholar 

  47. Dror S (2012) Designing cell-compatible hydrogels for biomedical applications. Science 336:1124–1128. https://doi.org/10.1126/science.1214804

    Article  CAS  Google Scholar 

  48. Feng X, Hou X, Cui C, Sun S, Sadik S, Wu S, Zhou F (2021) Mechanical and antibacterial properties of tannic acid-encapsulated carboxymethyl chitosan/polyvinyl alcohol hydrogels. Eng Regener 2:57–62. https://doi.org/10.1016/j.engreg.2021.05.002

    Article  Google Scholar 

  49. He X, Liu X, Yang J, Du H, Chai N, Sha Z, Geng M, Zhou X, He C (2020) Tannic acid-reinforced methacrylated chitosan/methacrylated silk fibroin hydrogels with multifunctionality for accelerating wound healing. Carbohydr Polym 247:116689. https://doi.org/10.1016/j.carbpol.2020.116689

    Article  CAS  Google Scholar 

  50. Rahman S, Carter P, Bhattarai N (2017) Aloe vera for tissue engineering applications. J Funct Biomater 8:8010006. https://doi.org/10.3390/jfb8010006

    Article  CAS  Google Scholar 

  51. International Organization for Standardization (2009) Biological evaluation of medical devices-from, 3th ed

  52. Nitta S, Kaketani S, Iwamoto H (2015) Development of chitosan–nanofiber-based hydrogels exhibiting high mechanical strength and pH-responsive controlled release. Eur Polymer J 67:50–56. https://doi.org/10.1016/j.eurpolymj.2015.03.053

    Article  CAS  Google Scholar 

  53. Ma M, Zhong Y, Jiang X (2020) Thermosensitive and pH-responsive tannin-containing hydroxypropyl chitin hydrogel with long-lasting antibacterial activity for wound healing. Carbohydr Polym 236:116096. https://doi.org/10.1016/j.carbpol.2020.116096

    Article  CAS  Google Scholar 

  54. Costa P, Sousa Lobo JM (2003) Evaluation of mathematical models describing drug release from estradiol transdermal systems. Drug Dev Ind Pharm 29:89–97. https://doi.org/10.1081/DDC-120016687

    Article  CAS  Google Scholar 

  55. Shah RM, Eldridge DS, Palombo EA, Harding IH (2017) Microwave-assisted microemulsion technique for production of miconazole nitrate- and econazole nitrate-loaded solid lipid nanoparticles. Eur J Pharm Biopharm 117:141–150. https://doi.org/10.1016/j.ejpb.2017.04.007

    Article  CAS  Google Scholar 

  56. Abdul Rasool BK, Mohammed AA, Salem YY (2021) The optimization of a dimenhydrinate transdermal patch formulation based on the quantitative analysis of in vitro release data by DD solver through skin penetration studies. Sci Pharm 89:89030033. https://doi.org/10.3390/scipharm89030033

    Article  CAS  Google Scholar 

  57. Costa P, Sousa Lobo JM (2001) Modeling and comparison of dissolution profiles. Eur J Pharm Sci 13:123–133. https://doi.org/10.1016/S0928-0987(01)00095-1

    Article  CAS  Google Scholar 

  58. Krstić J, Spasojević J, Radosavljević A, Perić-Grujić A, Đurić M, Kačarević-Popović Z, Popović S (2014) In vitro silver ion release kinetics from nanosilver/poly(vinyl alcohol) hydrogels synthesized by gamma irradiation. J Appl Polym Sci 131:40321. https://doi.org/10.1002/app.40321

  59. Valero C, Amaveda H, Mora M, García-Aznar JM (2018) Combined experimental and computational characterization of crosslinked collagen-based hydrogels. PLoS ONE 13(195820):e0195820. https://doi.org/10.1371/journal.pone.0195820

    Article  CAS  Google Scholar 

  60. Rescignano N, Hernandez R, Lopez LD, Calvillo I, Kenny JM, Mijangos C (2016) Preparation of alginate hydrogels containing silver nanoparticles: a facile approach for antibacterial applications. Polym Int 65:921–926. https://doi.org/10.1002/pi.5119

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the Royal Golden Jubilee Ph.D. scholarship of the Thailand Research Fund (Grant No. PHD/0220/2560) and Research and Graduate Studies, Khon Kaen University, Thailand. Natural Sciences and Engineering Research Council of Canada (NSERC) is acknowledged for partial funding of this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pornnapa Kasemsiri.

Ethics declarations

Conflict of interest

The authors declared that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file 1 (DOCX 5851 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ounkaew, A., Jarensungnen, C., Jaroenthai, N. et al. Fabrication of Hydrogel-Nano Silver Based on Aloe vera/Carboxymethyl Cellulose/Tannic Acid for Antibacterial and pH-Responsive Applications. J Polym Environ 31, 50–63 (2023). https://doi.org/10.1007/s10924-022-02611-1

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10924-022-02611-1

Keywords

Navigation