Skip to main content
Log in

Methylene Blue Sorption Phenomena onto Pectin, Brea Gum, Montmorillonite Based Hydrogels: Kinetic and Thermodynamic Assessment

  • Original Paper
  • Published:
Journal of Polymers and the Environment Aims and scope Submit manuscript

Abstract

The wastewater treatment, particularly the removal of organic contaminants, is often carried out by adsorption with solids. Hydrogels present a great swelling capacity that can be enhanced by the incorporation of nano-clays such as montmorillonita (Mt). Methylene blue is a common component of industrial effluents and its ecotoxicity in well-known. The aim of this work was to evaluate the adsorption capacity of hydrogels based on pectin and brea gum with Mt nanoparticles. The hydrogels were physically characterized, it was observed that Mt is exfoliated into the matrix, and affects the swelling and erosion of them. Incorporation of Mt caused an increment of swelling of approximately 150% at pH 6.5. The effects of various experimental parameters have been investigated. The temperature effect on the adsorption rate indicated an endothermic process with activation energy of 33.231 kJ mol−1. The removal % of MB at 45 °C, pH 2.5 and 75 mg L−1 of MB solution presented a value of 97%. The adsorption kinetic was analysed through different mathematical models (pseudo-first order, pseudo-second order, intra-particle, and Boyd models). Statistics and further analysis of the kinetics constants indicated that the pseudo-second order model better represents the behaviour of the samples. The application of intra particle model and Boyd model indicates that the adsorption phenomenon occurs in two stages. The first stage, of short duration, is related to the boundary layer. The second stage, which controls the process, is related to the chemical adsorption of the dye on the polymeric structure of the hydrogel.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Kausar A, Iqbal M, Javed A et al (2018) Dyes adsorption using clay and modified clay: a review. J Mol Liq 256:395–407. https://doi.org/10.1016/j.molliq.2018.02.034

    Article  CAS  Google Scholar 

  2. Wang J, Guo X (2020) Adsorption kinetic models: physical meanings, applications, and solving methods. J Hazard Mater 390:122156. https://doi.org/10.1016/j.jhazmat.2020.122156

    Article  CAS  PubMed  Google Scholar 

  3. Pakdel PM, Peighambardoust SJ (2018) Review on recent progress in chitosan-based hydrogels for wastewater treatment application. Carbohydr Polym 201:264–279

    Article  Google Scholar 

  4. Yagub MT, Sen TK, Afroze S, Ang HM (2014) Dye and its removal from aqueous solution by adsorption: a review. Adv Colloid Interface Sci 209:172–184. https://doi.org/10.1016/j.cis.2014.04.002

    Article  CAS  PubMed  Google Scholar 

  5. Slavutsky AM, Bertuzzi MA (2019) Formulation and characterization of hydrogel based on pectin and brea gum. Int J Biol Macromol 123:784–791. https://doi.org/10.1016/j.ijbiomac.2018.11.038

    Article  CAS  PubMed  Google Scholar 

  6. Maity J, Ray SK (2016) Enhanced adsorption of Cr(VI) from water by guar gum based composite hydrogels. Int J Biol Macromol 89:246–255. https://doi.org/10.1016/j.ijbiomac.2016.04.036

    Article  CAS  PubMed  Google Scholar 

  7. Ogata F, Ueta E, Kawasaki N (2016) Adsorption capability of ionic dyes onto pristine and calcined activated clay. e-J Surf Sci Nanotechnol 14:209–215. https://doi.org/10.1380/ejssnt.2016.209

    Article  CAS  Google Scholar 

  8. Fiol N, Escudero C, Poch J, Villaescusa I (2006) Preliminary studies on Cr(VI) removal from aqueous solution using grape stalk wastes encapsulated in calcium alginate beads in a packed bed up-flow column. React Funct Polym 66:795–807. https://doi.org/10.1016/j.reactfunctpolym.2005.11.006

    Article  CAS  Google Scholar 

  9. Xu D, Hein S, Loo SL, Wang K (2008) The fixed-bed study of dye removal on chitosan beads at high pH. Ind Eng Chem Res 47:8796–8800

    Article  CAS  Google Scholar 

  10. Lazaridis NK, Keenan H (2010) Chitosan beads as barriers to the transport of azo dye in soil column. J Hazard Mater 173:144–150. https://doi.org/10.1016/j.jhazmat.2009.08.062

    Article  CAS  PubMed  Google Scholar 

  11. Lezehari M, Baudu M, Bouras O, Basly J (2012) Fixed-bed column studies of pentachlorophenol removal by use of alginate-encapsulated pillared clay microbeads. J Coll Interface Sci 379:101–106. https://doi.org/10.1016/j.jcis.2012.04.054

    Article  CAS  Google Scholar 

  12. Vieira RM, Vilela PB, Becegato VA, Paulino AT (2018) Chitosan-based hydrogel and chitosan/acid-activated montmorillonite composite hydrogel for the adsorption and removal of Pb2+ and Ni2+ ions accommodated in aqueous solutions. J Environ Chem Eng 6:2713–2723. https://doi.org/10.1016/j.jece.2018.04.018

    Article  CAS  Google Scholar 

  13. Aichour A, Zaghouane-boudiaf H, Binti F, Zuki M (2019) Low-cost, biodegradable and highly effective adsorbents for batch and column fixed bed adsorption processes of methylene blue. J Environ Chem Eng 7:103409. https://doi.org/10.1016/j.jece.2019.103409

    Article  CAS  Google Scholar 

  14. Chen P-H, Kuo T-Y, Kuo J-Y et al (2010) Novel chitosan–pectin composite membranes with enhanced strength, hydrophilicity and controllable disintegration. Carbohydr Polym 82:1236–1242. https://doi.org/10.1016/j.carbpol.2010.06.057

    Article  CAS  Google Scholar 

  15. Tan KL, Hameed BH (2017) Insight into the adsorption kinetics models for the removal of contaminants from aqueous solutions. J Taiwan Inst Chem Eng 74:25–48. https://doi.org/10.1016/j.jtice.2017.01.024

    Article  CAS  Google Scholar 

  16. Piccin JS, Cadaval TRSA, De Pinto LAA, Dotto GL (2017) Adsorption isotherms in liquid phase: experimental, modeling, and interpretations. Springer, Cham

    Google Scholar 

  17. Anderson DR, Burnham KP, Press A (2008) When using information-theoretic pitfalls avoiding. Methods 66:912–918

    Google Scholar 

  18. Piolio MA, Slavutsky AMA, Koltan M et al (2019) Biopolymer-based formulations to improve the effect of the antimicrobial peptide Mcc J25(G12Y). Biocell 43(suppl 5):120

    Google Scholar 

  19. Abu Elella MH, Goda ES, Abdallah HM et al (2021) Innovative bactericidal adsorbents containing modified xanthan gum/montmorillonite nanocomposites for wastewater treatment. Int J Biol Macromol 167:1113–1125. https://doi.org/10.1016/j.ijbiomac.2020.11.065

    Article  CAS  PubMed  Google Scholar 

  20. Mekidiche M, Khaldi K, Nacer A, Boudjema S, Ameur N, Lerari-Zinai D, Bachari K, Choukchou-Braham A (2021) Organometallic modified montmorillonite application in the wastewater purification: Pollutant photodegradation and antibacterial efficiencies. Appl Surf Sci. https://doi.org/10.1016/j.apsusc.2021.151097

    Article  Google Scholar 

  21. Bertuzzi MA, Slavutsky AM, Armada M (2012) Physicochemical characterisation of the hydrocolloid from Brea tree (Cercidium praecox). Int J Food Sci Technol 47:768–775. https://doi.org/10.1111/j.1365-2621.2011.02907.x

    Article  CAS  Google Scholar 

  22. Castel V, Zivanovic S, Jurat-Fuentes JL et al (2016) Chromatographic fractionation and molecular mass characterization of Cercidium praecox (Brea) gum. J Sci Food Agric 96:4345–4350. https://doi.org/10.1002/jsfa.7642

    Article  CAS  PubMed  Google Scholar 

  23. Masuelli MA, Ochoa A (2018) Physicochemical parameters for brea gum exudate from Cercidium praecox tree. Coll Interface. https://doi.org/10.3390/colloids2040072

  24. Sznaider F, Rojas AM, Stortz CA, Navarro DA (2020) Chemical structure and rheological studies of arabinoglucuronoxylans from the Cercidium praecox exudate brea gum. Carbohydr Polym 228:115388. https://doi.org/10.1016/j.carbpol.2019.115388

    Article  CAS  PubMed  Google Scholar 

  25. Weber WJ, Morris JC (1963) Kinetic of adsorption on carbon from solution. J Sanit Eng Div Proc Am Soc Civ Eng 89:31–60

    Article  Google Scholar 

  26. Boyd GE, Schubert J, Adamson AW (1947) The exchange adsorption of ions from aqueous solutions by organic zeolites. I. Ion-Exchange Equilib 69:2818–2829

    CAS  Google Scholar 

  27. Reichenberg D (1953) Properties of ion-exchange resins in relation to their structure. III. Kinetics of exchange. J Am Chem Soc 75:589–597. https://doi.org/10.1021/ja01099a022

    Article  CAS  Google Scholar 

  28. El-Khaiary MI, Malash GF (2011) Common data analysis errors in batch adsorption studies. Hydrometallurgy 105:314–320. https://doi.org/10.1016/j.hydromet.2010.11.005

    Article  CAS  Google Scholar 

  29. Hurvich CM, Tsai CL (1989) Regression and time series model selection in small samples. Biometrika 76:297–307. https://doi.org/10.1093/biomet/76.2.297

    Article  Google Scholar 

  30. Bozoğlan BK, Duman O, Tunç S (2020) Preparation and characterization of thermosensitive chitosan/carboxymethylcellulose/scleroglucan nanocomposite hydrogels. Int J Biol Macromol 162:781–797. https://doi.org/10.1016/j.ijbiomac.2020.06.087

    Article  CAS  PubMed  Google Scholar 

  31. Tang H, Zhou W, Zhang L (2012) Adsorption isotherms and kinetics studies of malachite green on chitin hydrogels. J Hazard Mater 209–210:218–225. https://doi.org/10.1016/j.jhazmat.2012.01.010

    Article  CAS  PubMed  Google Scholar 

  32. Slavutsky AM, Bertuzzi MA, Armada M, García MG, Ochoa NA (2014) Preparation and characterization of montmorillonite/brea gum nanocomposites films. Food Hydrocoll 35:270–278

    Article  CAS  Google Scholar 

  33. Cabello SDP, Takara EA, Marchese J, Ochoa NA (2015) Influence of plasticizers in pectin fi lms: microstructural changes. Mater Chem Phys. https://doi.org/10.1016/j.matchemphys.2015.06.019

    Article  Google Scholar 

  34. Gorrasi G, Bugatti V, Viscusi G, Vittoria V (2021) Physical and barrier properties of chemically modified pectin with polycaprolactone through an environmentally friendly process. Colloid Polym Sci 299:429–437. https://doi.org/10.1007/s00396-020-04699-0

    Article  CAS  Google Scholar 

  35. Fan T, Liu Z, Zhao Y et al (2022) Synthesis of a tough montmorillonite/hydrogel composites for hot work of long-distance oil pipelines. Compos Sci Technol. https://doi.org/10.1016/j.compscitech.2022.109268

    Article  Google Scholar 

  36. Müller CMO, Borges J, Yamashita F (2011) Effect of nanoclay incorporation method on mechanical and water vapor barrier properties of starch-based films. Ind Crops Prod 33:605–610. https://doi.org/10.1016/j.indcrop.2010.12.021

    Article  CAS  Google Scholar 

  37. Jafari H, Atlasi Z, Mahdavinia GR et al (2021) Magnetic κ-carrageenan/chitosan/montmorillonite nanocomposite hydrogels with controlled sunitinib release. Mater Sci Eng C 124:112042. https://doi.org/10.1016/j.msec.2021.112042

    Article  CAS  Google Scholar 

  38. Qian JY, Chen W, Zhang WM, Zhang H (2009) Adulteration identification of some fungal polysaccharides with SEM, XRD, IR and optical rotation: a primary approach. Carbohydr Polym 78:620–625. https://doi.org/10.1016/j.carbpol.2009.05.025

    Article  CAS  Google Scholar 

  39. Slavutsky AM, Bertuzzi MA, Armada M et al (2014) Preparation and characterization of montmorillonite/brea gum nanocomposites films. Food Hydrocoll. https://doi.org/10.1016/j.foodhyd.2013.06.008

    Article  Google Scholar 

  40. Chomto P, Nunthanid J (2017) Physicochemical and powder characteristics of various citrus pectins and their application for oral pharmaceutical tablets. Carbohydr Polym 174:25–31. https://doi.org/10.1016/j.carbpol.2017.06.049

    Article  CAS  PubMed  Google Scholar 

  41. Bigucci F, Luppi B, Cerchiara T et al (2008) Chitosan/pectin polyelectrolyte complexes: selection of suitable preparative conditions for colon-specific delivery of vancomycin. Eur J Pharm Sci 35:435–441. https://doi.org/10.1016/j.ejps.2008.09.004

    Article  CAS  PubMed  Google Scholar 

  42. Naidu VGM, Madhusudhana K, Sashidhar RB et al (2009) Polyelectrolyte complexes of gum kondagogu and chitosan, as diclofenac carriers. Carbohydr Polym 76:464–471. https://doi.org/10.1016/j.carbpol.2008.11.010

    Article  CAS  Google Scholar 

  43. Wang W, Zhao Y, Yi H et al (2019) Pb(ΙΙ) removal from water using porous hydrogel of chitosan-2D montmorillonite. Int J Biol Macromol 128:85–93. https://doi.org/10.1016/j.ijbiomac.2019.01.098

    Article  CAS  PubMed  Google Scholar 

  44. Wang J, Wang W, Ai Z et al (2021) Adsorption toward Pb(II) occurring on three-dimensional reticular-structured montmorillonite hydrogel surface. Appl Clay Sci 210:106153. https://doi.org/10.1016/j.clay.2021.106153

    Article  CAS  Google Scholar 

  45. Ray SS, Bousmina M (2005) Biodegradable polymers and their layered silicate nanocomposites: in greening the 21st century materials world. Prog Mater Sci 50:962–1079. https://doi.org/10.1016/j.pmatsci.2005.05.002

    Article  CAS  Google Scholar 

  46. Bhattacharyya KG, SenGupta S, Sarma GK (2014) Interactions of the dye, Rhodamine B with kaolinite and montmorillonite in water. Appl Clay Sci 99:7–17. https://doi.org/10.1016/j.clay.2014.07.012

    Article  CAS  Google Scholar 

  47. Peng N, Hu D, Zeng J et al (2016) Superabsorbent cellulose-clay nanocomposite hydrogels for highly efficient removal of dye in water. ACS Sustain Chem Eng 4:7217–7224. https://doi.org/10.1021/acssuschemeng.6b02178

    Article  CAS  Google Scholar 

  48. Dai H, Huang Y, Huang H (2018) Eco-friendly polyvinyl alcohol/carboxymethyl cellulose hydrogels reinforced with graphene oxide and bentonite for enhanced adsorption of methylene blue. Carbohydr Polym 185:1–11. https://doi.org/10.1016/j.carbpol.2017.12.073

    Article  CAS  PubMed  Google Scholar 

  49. da Costa MPM, Ferreira ILM, Cruz MTM (2016) New polyelectrolyte complex from pectin/chitosan and montmorillonite clay. Carbohydr Polym 146:123–130. https://doi.org/10.1016/j.carbpol.2016.03.025

    Article  CAS  PubMed  Google Scholar 

  50. Bauli CR, Lima GF, de Souza AG et al (2021) Eco-friendly carboxymethyl cellulose hydrogels filled with nanocellulose or nanoclays for agriculture applications as soil conditioning and nutrient carrier and their impact on cucumber growing. Colloids Surf A 623:126771. https://doi.org/10.1016/j.colsurfa.2021.126771

    Article  CAS  Google Scholar 

  51. Wang W, Zhao Y, Bai H et al (2018) Methylene blue removal from water using the hydrogel beads of poly(vinyl alcohol)-sodium alginate-chitosan-montmorillonite. Carbohydr Polym 198:518–528. https://doi.org/10.1016/j.carbpol.2018.06.124

    Article  CAS  PubMed  Google Scholar 

  52. Felycia SI, Soetaredjo E, Ayucitra A (2015) Clay materials for environmental remediation. Springer, Cham

    Google Scholar 

  53. Çelik MS (2004) Electrokinetic behavior of clay surfaces. Elsevier, Amsterdam

    Book  Google Scholar 

  54. Bello MO, Abdus-Salam N, Adekola FA, Pal U (2021) Isotherm and kinetic studies of adsorption of methylene blue using activated carbon from ackee apple pods. Chem Data Collect 31:100607. https://doi.org/10.1016/j.cdc.2020.100607

    Article  CAS  Google Scholar 

  55. Li Y, Du Q, Liu T et al (2013) Comparative study of methylene blue dye adsorption onto activated carbon, graphene oxide, and carbon nanotubes. Chem Eng Res Des 91:361–368. https://doi.org/10.1016/j.cherd.2012.07.007

    Article  CAS  Google Scholar 

  56. Abu Elella MH, Goda ES, Gamal H et al (2021) Green antimicrobial adsorbent containing grafted xanthan gum/SiO2 nanocomposites for malachite green dye. Int J Biol Macromol 191:385–395. https://doi.org/10.1016/j.ijbiomac.2021.09.040

    Article  CAS  PubMed  Google Scholar 

  57. Nethaji S, Sivasamy A (2011) Adsorptive removal of an acid dye by lignocellulosic waste biomass activated carbon: Equilibrium and kinetic studies. Chemosphere 82:1367–1372. https://doi.org/10.1016/j.chemosphere.2010.11.080

    Article  CAS  PubMed  Google Scholar 

  58. Nethaji S, Sivasamy A, Thennarasu G, Saravanan S (2010) Adsorption of Malachite Green dye onto activated carbon derived from Borassus aethiopum flower biomass. J Hazard Mater 181:271–280. https://doi.org/10.1016/j.jhazmat.2010.05.008

    Article  CAS  PubMed  Google Scholar 

  59. Karmaker S, Sintaha F, Saha TK (2019) Kinetics, isotherm and thermodynamic studies of the adsorption of reactive red 239 dye from aqueous solution by chitosan 8B. Adv Biol Chem 09:1–22. https://doi.org/10.4236/abc.2019.91001

    Article  CAS  Google Scholar 

  60. Pholosi A, Naidoo EB, Ofomaja AE (2020) Intraparticle diffusion of Cr(VI) through biomass and magnetite coated biomass: a comparative kinetic and diffusion study. S Afr J Chem Eng 32:39–55. https://doi.org/10.1016/j.sajce.2020.01.005

    Article  Google Scholar 

  61. Zulfikar MA, Setiyanto H, Djajanti SD (2013) Effect of temperature and kinetic modelling of lignosulfonate adsorption onto powdered eggshell in batch systems. Songklanakarin J Sci Technol 35:309–316

    CAS  Google Scholar 

  62. Mahmoud DK, Salleh MAM, Karim WAWA et al (2012) Batch adsorption of basic dye using acid treated kenaf fibre char: equilibrium, kinetic and thermodynamic studies. Chem Eng J 181–182:449–457. https://doi.org/10.1016/j.cej.2011.11.116

    Article  CAS  Google Scholar 

  63. Ma J, Jia Y, Jing Y et al (2012) Kinetics and thermodynamics of methylene blue adsorption by cobalt-hectorite composite. Dye Pigment 93:1441–1446. https://doi.org/10.1016/j.dyepig.2011.08.010

    Article  CAS  Google Scholar 

  64. Plazinski W, Rudzinski W, Plazinska A (2009) Theoretical models of sorption kinetics including a surface reaction mechanism: a review. Adv Colloid Interface Sci 152:2–13. https://doi.org/10.1016/j.cis.2009.07.009

    Article  CAS  PubMed  Google Scholar 

  65. García ER, Medina RL, Lozano MM et al (2014) Adsorption of azo-dye orange II from aqueous solutions using a metal-organic framework material: iron-benzenetricarboxylate. Materials (Basel) 7:8037–8057. https://doi.org/10.3390/ma7128037

    Article  Google Scholar 

  66. Benhouria A, Islam MA, Zaghouane-Boudiaf H et al (2015) Calcium alginate-bentonite-activated carbon composite beads as highly effective adsorbent for methylene blue. Chem Eng J 270:621–630. https://doi.org/10.1016/j.cej.2015.02.030

    Article  CAS  Google Scholar 

  67. Azizian S (2004) Kinetic models of sorption: a theoretical analysis. J Colloid Interface Sci 276:47–52. https://doi.org/10.1016/j.jcis.2004.03.048

    Article  CAS  PubMed  Google Scholar 

  68. Malash GF, El-Khaiary MI (2010) Piecewise linear regression: a statistical method for the analysis of experimental adsorption data by the intraparticle-diffusion models. Chem Eng J 163:256–263. https://doi.org/10.1016/j.cej.2010.07.059

    Article  CAS  Google Scholar 

  69. Tran HN, You SJ, Chao HP (2016) Thermodynamic parameters of cadmium adsorption onto orange peel calculated from various methods: a comparison study. J Environ Chem Eng 4:2671–2682. https://doi.org/10.1016/j.jece.2016.05.009

    Article  CAS  Google Scholar 

  70. Thakur S, Pandey S, Arotiba OA (2016) Development of a sodium alginate-based organic/inorganic superabsorbent composite hydrogel for adsorption of methylene blue. Carbohydr Polym. https://doi.org/10.1016/j.carbpol.2016.06.104

    Article  PubMed  Google Scholar 

  71. Al-Ghouti M, Khraisheh MAM, Ahmad MNM, Allen S (2005) Thermodynamic behaviour and the effect of temperature on the removal of dyes from aqueous solution using modified diatomite: a kinetic study. J Colloid Interface Sci 287:6–13. https://doi.org/10.1016/j.jcis.2005.02.002

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors thank the staff of LASEM (Laboratorio de Microscopia Electrónica de Barrido, ANPCyT, CONICET, UNSA) technical assistance and Dr. Javier Molla for the XRD analysis (UCASAL).

Funding

The financial support provided by Consejo de Investigación de la Universidad Nacional de Salta (CIUNSa-Proyecto 2617) and Agencia Nacional Científica y Tecnológica (PICT 2019-2704) are gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to conception and design of the study. Material preparation, data collection, and analysis were performed by AMS. The first draft of the manuscript was written by AMS and all authors commented and contributed to subsequent versions of the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Aníbal Marcelo Slavutsky.

Ethics declarations

Conflict of interest

There are no conflicts to declare.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 267 KB)

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gamboni, J.E., Bertuzzi, M.A. & Slavutsky, A.M. Methylene Blue Sorption Phenomena onto Pectin, Brea Gum, Montmorillonite Based Hydrogels: Kinetic and Thermodynamic Assessment. J Polym Environ 30, 4710–4725 (2022). https://doi.org/10.1007/s10924-022-02546-7

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10924-022-02546-7

Keywords

Navigation