Skip to main content
Log in

Chitosan/Carbon-Doped TiO2 Composite for Adsorption of Two Anionic Dyes in Solution and Gaseous SO2 Capture: Experimental Modeling and Optimization

  • Original Paper
  • Published:
Journal of Polymers and the Environment Aims and scope Submit manuscript

Abstract

In this work, a chitosan (CHI) biopolymer was developed by loading different wt% of carbon-doped TiO2 (C–TiO2) with CHI to attain an efficient adsorbent of chitosan/carbon-doped TiO2 (CHI/C–TiO2). The fabricated materials were deployed for the removal of organic pollutants (methyl orange, MO; and reactive orange 16, RO16) and sulfur dioxide capture. The synthesized composites were characterized by BET, FTIR, XRD, TEM, SEM–EDX, pHpzc, and pH-potentiometric titrations. Statistical modeling represented by the Box–Behnken design (BBD) was utilized for optimization of the impacts of the various parameters; A: C–TiO2 particles loading (0–50%), B: dose (0.04–0.15 g), C: pH (4–10), and D: temperature (30–50 °C) on the adsorption of MO and RO16 dyes. The adsorption isotherms were obtained at equilibrium and under dynamic conditions, where the best fit to the isotherm results was shown by the Langmuir model and pseudo-first-order kinetic model, respectively. The maximum adsorption capacities of CHI/C–TiO2-50 (containing 50% of C–TiO2) was estimated at 196.6 mg/g and 270.5 mg/g for MO and RO16 dyes, respectively. This work revealed that the designed biomaterial (CHI/C–TiO2-50) could be realized as an effective adsorbent for environmental remediation that includes decontamination of wastewater and SO2 gas capture.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Data Availability

The datasets generated during and/or analysed during the current study are available from the corresponding author on reasonable request.

References

  1. Ibrahim M, Labaki M, Giraudon JM, Lamonier JF (2020) Hydroxyapatite, a multifunctional material for air, water and soil pollution control: a review. J Hazard Mater 383:121139

    Article  CAS  PubMed  Google Scholar 

  2. Abd-Malek NN, Yousif E, Jawad AH (2020) Optimization of adsorption parameters for reactive red 4 (RR4) removal by cross-linked chitosan-epichlorohydrin using Box Behnken design. Sci Lett 14(1):83–95

    Google Scholar 

  3. Aigbe UO, Ukhurebor KE, Onyancha RB, Osibote OA, Darmokoesoemo H, Kusuma HS (2021) Fly ash-based adsorbent for adsorption of heavy metals and dyes from aqueous solution: a review. J Mater Res Technol 14:2751–2774

    Article  CAS  Google Scholar 

  4. Márquez AA, Sirés I, Brillas E, Nava JL (2020) Mineralization of Methyl Orange azo dye by processes based on H2O2 electrogeneration at a 3D-like air-diffusion cathode. Chemosphere 259:127466

    Article  PubMed  Google Scholar 

  5. Wasim M, Sabir A, Khan RU (2021) Membranes with tunable graphene morphology prepared via Stöber method for high rejection of azo dyes. J Environ Chem Eng 9(5):106069

    Article  CAS  Google Scholar 

  6. Li X, Wang Z, Ning J, Gao M, Jiang W, Zhou Z, Li G (2018) Preparation and characterization of a novel polyethyleneimine cation-modified persimmon tannin bioadsorbent for anionic dye adsorption. J Environ Manage 217:305–314

    Article  CAS  PubMed  Google Scholar 

  7. Braghiroli FL, Bouafif H, Koubaa A (2019) Enhanced SO2 adsorption and desorption on chemically and physically activated biochar made from wood residues. Ind Crops Prod 138:111456

    Article  CAS  Google Scholar 

  8. Yang K, Yi H, Tang X, Zhao S, Gao F, Huang Y, Xie X (2019) Reducing the competitive adsorption between SO2 and NO by Al2O3@TiO2 core-shell structure adsorbent. Chem Eng J 364:420–427

    Article  CAS  Google Scholar 

  9. Abdulrasheed AA, Jalil AA, Triwahyono S, Zaini MAA, Gambo Y, Ibrahim M (2018) Surface modification of activated carbon for adsorption of SO2 and NOX: a review of existing and emerging technologies. Rene Sustain Energy Rev 94:1067–1085

    Article  CAS  Google Scholar 

  10. Xiao W, Jiang X, Liu X, Zhou W, Garba ZN, Lawan I, Yuan Z (2021) Adsorption of organic dyes from wastewater by metal-doped porous carbon materials. J Clean Prod 284:124773

    Article  CAS  Google Scholar 

  11. Guo D, Xiao Y, Li T, Zhou Q, Shen L, Li R, Lin H (2020) Fabrication of high-performance composite nanofiltration membranes for dye wastewater treatment: mussel-inspired layer-by-layer self-assembly. J Colloid Inter Sci 560:273–283

    Article  CAS  Google Scholar 

  12. Dewangan K, Singh D, Satpute N, Singh R, Jaiswal A, Shrivas K, Bahadur I (2022) Hydrothermally grown α-MoO3 microfibers for photocatalytic degradation of methylene blue dye. J Mol Liq 349:118202

    Article  CAS  Google Scholar 

  13. Chanikya P, Nidheesh PV, Babu DS, Gopinath A, Kumar MS (2020) Treatment of dyeing wastewater by combined sulfate radical based electrochemical advanced oxidation and electrocoagulation processes. Sep Purif Technol 254:117570

    Article  Google Scholar 

  14. Yagub MT, Sen TK, Afroze S, Ang HM (2014) Dye and its removal from aqueous solution by adsorption: a review. Adv Colloid Inter Sci 209:172–184

    Article  CAS  Google Scholar 

  15. Wong S, Ngadi N, Inuwa IM, Hassan O (2018) Recent advances in applications of activated carbon from biowaste for wastewater treatment: a short review. J Clean Prod 175:361–375

    Article  CAS  Google Scholar 

  16. Nor NM, Lau LC, Lee KT, Mohamed AR (2013) Synthesis of activated carbon from lignocellulosic biomass and its applications in air pollution control—a review. J Environ Chem Eng 1(4):658–666

    Article  Google Scholar 

  17. Pitchay T, Jawad AH, Johari IS, Sabar S (2022) Kinetics studies of metallic ions adsorption by immobilised chitosan. Sci Lett 16(1):137–148

    Article  Google Scholar 

  18. Abdalla TH, Nasr AS, Bassioni G, Harding DR, Kandile NG (2022) Fabrication of sustainable hydrogels-based chitosan Schiff base and their potential applications. Arab J Chem 15(1):103511

    Article  CAS  Google Scholar 

  19. Panda PK, Yang JM, Chang YH (2021) Preparation and characterization of ferulic acid-modified water soluble chitosan and poly (γ-glutamic acid) polyelectrolyte films through layer-by-layer assembly towards protein adsorption. Int J Biol Macromol 171:457–464

    Article  CAS  PubMed  Google Scholar 

  20. Fan XD, Zhang XK (2013) Simultaneous removal of SO2 and NO with activated carbon from sewage sludge modified by chitosan. Appl Mech Mater 253:960–964

    Google Scholar 

  21. Ali HE, Nasef SM, Gad YH (2022) Remediation of Astrazon blue and Lerui acid brilliant blue dyes from waste solutions using amphoteric superparamagnetic nanocomposite hydrogels based on chitosan prepared by gamma rays. Carbohydr Polym 283:119149

    Article  CAS  PubMed  Google Scholar 

  22. Jawad AH, Rangabhashiyam S, Abdulhameed AS, Syed-Hassan SSA, Alothman ZA, Wilson LD (2022) Process optimization and adsorptive mechanism for reactive blue 19 dye by magnetic crosslinked chitosan/MgO/Fe3O4 biocomposite. J Polym Environ 30(7):2759–2773

    Article  CAS  Google Scholar 

  23. Mohammadi E, Daraei H, Ghanbari R, Athar SD, Zandsalimi Y, Ziaee A, Yetilmezsoy K (2019) Synthesis of carboxylated chitosan modified with ferromagnetic nanoparticles for adsorptive removal of fluoride, nitrate, and phosphate anions from aqueous solutions. J Mol Liq 273:116–124

    Article  CAS  Google Scholar 

  24. Jawad AH, Abdulhameed AS, Selvasembian R, Alothman ZA, Wilson LD (2022) Magnetic biohybrid chitosan-ethylene glycol diglycidyl ether/magnesium oxide/Fe3O4 nanocomposite for textile dye removal: Box-Behnken design optimization and mechanism study. J Polym Res 29(5):1–15

    Article  Google Scholar 

  25. Vela N, Calín M, Yáñez-Gascón MJ, Garrido I, Pérez-Lucas G, Fenoll J, Navarro S (2018) Photocatalytic oxidation of six pesticides listed as endocrine disruptor chemicals from wastewater using two different TiO2 samples at pilot plant scale under sunlight irradiation. J Photochem Photobiol A Chem 353:271–278

    Article  CAS  Google Scholar 

  26. Goldstein S, Behar D, Rabani J (2008) Mechanism of visible light photocatalytic oxidation of methanol in aerated aqueous suspensions of carbon-doped TiO2. J Phys Chem C 112(39):15134–15139

    Article  CAS  Google Scholar 

  27. Shehzad H, Ahmed E, Sharif A, Farooqi ZH, Din MI, Begum R, Nawaz I (2022) Modified alginate-chitosan-TiO2 composites for adsorptive removal of Ni (II) ions from aqueous medium. Int J Boil Macromol 194:117–127

    Article  CAS  Google Scholar 

  28. Cui HF, Wu WW, Li MM, Song X, Lv Y, Zhang TT (2018) A highly stable acetylcholinesterase biosensor based on chitosan-TiO2-graphene nanocomposites for detection of organophosphate pesticides. Biosens Bioelectron 99:223–229

    Article  CAS  PubMed  Google Scholar 

  29. Qu L, Chen G, Dong S, Huo Y, Yin Z, Li S, Chen Y (2019) Improved mechanical and antimicrobial properties of zein/chitosan films by adding highly dispersed nano-TiO2. Ind Crops Prod 130:450–458

    Article  CAS  Google Scholar 

  30. Rasoulzadeh H, Motesaddi Zarandi S, Massoudinejad M, Amini MM, Sheikhmohammadi A (2021) Investigation into the influencing factors and adsorption characteristics in the effective capture of carbon dioxide in flue gas by chitosan grafted Leca biocomposite. Int J Environ Anal Chem. https://doi.org/10.1080/03067319.2021.2004408

    Article  Google Scholar 

  31. Zhang W, Huang T, Ren Y, Wang Y, Yu R, Wang J, Tu Q (2021) Preparation of chitosan crosslinked with metal-organic framework (MOF-199)@ aminated graphene oxide aerogel for the adsorption of formaldehyde gas and methyl orange. Int J Biol Macromol 193:2243–2251

    Article  CAS  PubMed  Google Scholar 

  32. Aboushouk MI, El-Zomrawy AA, Salem AM (2022) Electrochemical detection of H2S gas based on chitosan extracted from shrimp shells loaded cadmium ions. Egypt J Chem 65(5):185–192

    Google Scholar 

  33. Zhao J, Xi X, Ouyang H, Yang J, Wang Y, Yi L, Zhao L (2021) Acidic and alkaline gas sensitive and self-healing chitosan aerogel based on electrostatic interaction. Carbohydr Polym 272:118445

    Article  CAS  PubMed  Google Scholar 

  34. Bayram A, Özbek C, Şenel M, Okur S (2017) CO gas sorption properties of ferrocene branched chitosan derivatives. Sen Actuators B: Chem 241:308–313

    Article  CAS  Google Scholar 

  35. Abdulhameed AS, Mohammad AT, Jawad AH (2019) Application of response surface methodology for enhanced synthesis of chitosan tripolyphosphate/TiO2 nanocomposite and adsorption of reactive orange 16 dye. J Clean Prod 232:43–56

    Article  CAS  Google Scholar 

  36. Garg VK, Kumar R, Gupta R (2004) Removal of malachite green dye from aqueous solution by adsorption using agro-industry waste: a case study of Prosopis cineraria. Dyes Pigm 62(1):1–10

    Article  CAS  Google Scholar 

  37. Dalvand A, Nabizadeh R, Ganjali MR, Khoobi M, Nazmara S, Mahvi AH (2016) Modeling of reactive blue 19 azo dye removal from colored textile wastewater using L-arginine-functionalized Fe3O4 nanoparticles: Optimization, reusability, kinetic and equilibrium studies. J Magn Magn Mater 404:179–189

    Article  CAS  Google Scholar 

  38. Mohammad AT, Abdulhameed AS, Jawad AH (2019) Box-Behnken design to optimize the synthesis of new crosslinked chitosan-glyoxal/TiO2 nanocomposite: methyl orange adsorption and mechanism studies. Int J Biol Macromol 129:98–109

    Article  CAS  PubMed  Google Scholar 

  39. Mostafa MH, Elsawy MA, Darwish MS, Hussein LI, Abdaleem AH (2020) Microwave-assisted preparation of Chitosan/ZnO nanocomposite and its application in dye removal. Mater Chem Phys 248:122914

    Article  CAS  Google Scholar 

  40. Noorimotlagh Z, Kazeminezhad I, Jaafarzadeh N, Ahmadi M, Ramezani Z, Martinez SS (2018) The visible-light photodegradation of nonylphenol in the presence of carbon-doped TiO2 with rutile/anatase ratio coated on GAC: effect of parameters and degradation mechanism. J Hazard Mater 350:108–120

    Article  CAS  PubMed  Google Scholar 

  41. dos Santos JM, Pereira CR, Pinto LAA, Frantz T, Lima ÉC, Foletto EL, Dotto GL (2019) Synthesis of a novel CoFe2O4/chitosan magnetic composite for fast adsorption of indigotine blue dye. Carbohydr Polym 217:6–14

    Article  PubMed  Google Scholar 

  42. Melián EP, Díaz OG, Méndez AO, López CR, Suárez MN, Rodríguez JD, Peña JP (2013) Efficient and affordable hydrogen production by water photo-splitting using TiO2-based photocatalysts. Int J Hydro Energy 38(5):2144–2155

    Article  Google Scholar 

  43. Jawad AH, Abdulhameed AS, Wilson LD, Hanafiah MAKM, Nawawi WI, Alothman ZA, Rizwan Khan M (2021) Fabrication of Schiff’s base chitosan-glutaraldehyde/activated charcoal composite for cationic dye removal: optimization using response surface methodology. J Polym Environ 29(9):2855–2868

    Article  CAS  Google Scholar 

  44. Çatlıoğlu F, Akay S, Turunç E, Gözmen B, Anastopoulos I, Kayan B, Kalderis D (2021) Preparation and application of Fe-modified banana peel in the adsorption of methylene blue: process optimization using response surface methodology. Environ Nanotechnol Monit Manage 16:100517

    Google Scholar 

  45. Jawad AH, Abdulhameed AS, Bahrudin NN, Hum NNMF, Surip SN, Syed-Hassan SSA, Sabar S (2021) Microporous activated carbon developed from KOH activated biomass waste: surface mechanistic study of methylene blue dye adsorption. Water Sci Technol 84(8):1858–1872

    Article  CAS  PubMed  Google Scholar 

  46. Langhammer D, Kullgren J, Mitev P, Österlund L (2018) SO2 adsorption on rutile TiO2 (110): An infrared reflection-absorption spectroscopy and density functional theory study. Surf Sci 677:46–51

    Article  CAS  Google Scholar 

  47. Lagergren S (1898) Zur theorie der sogenannten adsorption geloster stoffe. Vet Akad Handl 24:1–39

    Google Scholar 

  48. Ho YS, McKay G (1998) Sorption of dye from aqueous solution by peat. Chem Eng J 70:115–124

    Article  CAS  Google Scholar 

  49. de Souza APN, Licea YE, Colaço MV, Senra JD, Carvalho NM (2021) Green iron oxides/amino-functionalized MCM-41 composites as adsorbent for anionic azo dye: kinetic and isotherm studies. J Environ Chem Eng 9(2):105062

    Article  Google Scholar 

  50. Langmuir I (1918) The adsorption of gases on plane surfaces of glass, mica and platinum. J Am Chem Soc 40:1361–1403

    Article  CAS  Google Scholar 

  51. Frenudlich HMF (1906) Over the adsorption in solution. J Phys Chem 57:385–471

    Google Scholar 

  52. Temkin MI (1940) Kinetics of ammonia synthesis on promoted iron catalysts. Acta Physiochim URSS 12:327–356

    CAS  Google Scholar 

  53. Salem MA, Khan AM, Manea YK, Wani AA (2022) Nano chromium embedded in f-CNT supported CoBi-LDH nanocomposites for selective adsorption of Pb2+ and hazardous organic dyes. Chemosphere 289:133073

    Article  CAS  PubMed  Google Scholar 

  54. Hussain S, Kamran M, Khan SA, Shaheen K, Shah Z, Suo H, Ghani U (2021) Adsorption, kinetics and thermodynamics studies of methyl orange dye sequestration through chitosan composites films. Int J Boil Macromol 168:383–394

    Article  CAS  Google Scholar 

  55. Sriram G, Bendre A, Altalhi T, Jung HY, Hegde G, Kurkuri M (2022) Surface engineering of silica based materials with Ni–Fe layered double hydroxide for the efficient removal of methyl orange: Isotherms, kinetics, mechanism and high selectivity studies. Chemosphere 287:131976

    Article  CAS  PubMed  Google Scholar 

  56. Niu C, Zhang N, Hu C, Zhang C, Zhang H, Xing Y (2021) Preparation of a novel citric acid-crosslinked Zn-MOF/chitosan composite and application in adsorption of chromium (VI) and methyl orange from aqueous solution. Carbohydr Polym 258:117644

    Article  CAS  PubMed  Google Scholar 

  57. Verma M, Tyagi I, Kumar V, Goel S, Vaya D, Kim H (2021) Fabrication of GO-MnO2 nanocomposite using hydrothermal process for cationic and anionic dyes adsorption: kinetics, isotherm, and reusability. J Environ Chem Eng 9(5):106045

    Article  CAS  Google Scholar 

  58. Zhu W, Jiang X, Liu F, You F, Yao C (2020) Preparation of chitosan-graphene oxide composite aerogel by hydrothermal method and its adsorption property of methyl orange. Polymer 12(9):2169

    Article  CAS  Google Scholar 

  59. Allouche FN, Yassaa N, Lounici H (2015) Sorption of methyl orange from aqueous solution on chitosan bomass. Proc Earth Planet Sci 15:596–601

    Article  CAS  Google Scholar 

  60. Kim TY, Lee JW, Cho SY (2015) Application of residual brewery yeast for adsorption removal of Reactive Orange 16 from aqueous solution. Adv Powder Technol 26(1):267–274

    Article  CAS  Google Scholar 

  61. Ramachandran P, Vairamuthu R, Ponnusamy S (2011) Adsorption isotherms, kinetics, thermodynamics and desorption studies of reactive Orange 16 on activated carbon derived from Ananas comosus (L.) carbon. J Eng Appl Sci 6(11):15–26

    Google Scholar 

  62. Abd Malek NN, Jawad AH, Ismail K, Razuan R, Alothman ZA (2021) Fly ash modified magnetic chitosan-polyvinyl alcohol blend for reactive orange 16 dye removal: adsorption parametric optimization. Int J Boil Macromol 189:464–476

    Article  Google Scholar 

  63. Abd Malek NN, Jawad AH, Abdulhameed AS, Ismail K, Hameed BH (2020) New magnetic Schiff’s base-chitosan-glyoxal/fly ash/Fe3O4 biocomposite for the removal of anionic azo dye: an optimized process. Int J Biol Macromol 146:530–539

    Article  CAS  Google Scholar 

  64. Jawad AH, Malek NNA, Abdulhameed AS, Razuan R (2020) Synthesis of magnetic chitosan-fly ash/Fe3O4 composite for adsorption of reactive orange 16 dye: optimization by Box–Behnken design. J Polym Environ 28(3):1068–1082

    Article  CAS  Google Scholar 

  65. Ecer Ü, Zengin A, Şahan T (2021) Magnetic clay\zeolitic imidazole framework nanocomposite (ZIF-8@ Fe3O4@ BNT) for reactive orange 16 removal from liquid media. Colloids Surf A 630:127558

    Article  CAS  Google Scholar 

  66. Singh SK, Das A (2015) The n → π* interaction: a rapidly emerging non-covalent interaction. Phys Chem Chem Phys 17(15):9596–9612

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors would like to acknowledge Faculty of Applied Sciences, Universiti Teknologi MARA, Shah Alam, for facilitating this research work. The authors would like to thank Universiti Teknologi MARA (UiTM) and Universitas Indonesia (UI) for supporting this research project by UiTM-UI Strategic Research Partnership grants with grants numbers 100-RMC 5/3/SRP 052/2021 (UiTM) and NKB-674/UN2.RST/HKP.05.00/2021 (UI).

Funding

This research project is funded by the Universiti Teknologi MARA (UiTM) and Universitas Indonesia (UI) under UiTM-UI Strategic Research Partnership grants with grants numbers 100-RMC 5/3/SRP 052/2021 (UiTM) and NKB-674/UN2.RST/HKP.05.00/2021 (UI).

Author information

Authors and Affiliations

Authors

Contributions

ASA: Formal analysis, Validation, Data Curation, Writing—Original; AHJ: Project administration, Formal analysis, Validation, Data Curation, Writing—Original, Validation, funding acquisition, Project administration; MR: Project administration, Conceptualization, funding acquisition. TK: Validation, Data Curation. LDW: Writing—Review & Editing. ZMY: Formal analysis, Validation. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Ali H. Jawad.

Ethics declarations

Conflict of interest

The authors have no relevant financial or non-financial interests to disclose.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Abdulhameed, A.S., Jawad, A.H., Ridwan, M. et al. Chitosan/Carbon-Doped TiO2 Composite for Adsorption of Two Anionic Dyes in Solution and Gaseous SO2 Capture: Experimental Modeling and Optimization. J Polym Environ 30, 4619–4636 (2022). https://doi.org/10.1007/s10924-022-02532-z

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10924-022-02532-z

Keywords

Navigation