Skip to main content
Log in

Competitive Adsorption of Pb(II) and Phenol Onto Modified Chitosan/Vermiculite Adsorbents

  • Original Paper
  • Published:
Journal of Polymers and the Environment Aims and scope Submit manuscript

Abstract

Many industrial wastewaters are contaminated with both heavy metal ions and organic compounds, posing a major threat to public health and the ecosystem. In this work, pristine chitosan modified vermiculite (CSVT) with high specific surface area (17.24 m2/g) was prepared by drop-wise method and applied to simultaneous adsorption of Pb(II) and phenol from aqueous solution. The prepared adsorbents were characterized by X-ray diffraction, Brunauer, Emmett, Teller, energy dispersive X-ray spectroscopy, Fourier-transform infrared, and scanning electron microscopy. The simultaneous adsorption performance was investigated systematically at different solution-pH, adsorbent dosage, initial Pb(II) and phenol concentrations, and contact time. Kinetic experiments indicated that the adsorption process of both pollutants could be better represented by a pseudo-second-order model. The maximal adsorption capacities of Pb(II) and phenol in the binary system depending on Langmuir isotherm model are 98.52 and 67.08 mg/g, respectively. In the binary adsorption system, the adsorption of one contaminant was not affected by the other adsorbed one. Finally, the results clearly showed that chitosan modified vermiculite had the ability to simultaneously adsorb Pb(II) and phenol.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Li N, Bai R (2006) Highly enhanced adsorption of lead ions on chitosan granules functionalized with poly(acrylic acid). Ind Eng Chem Res 45(23):7897–7904

    Article  CAS  Google Scholar 

  2. Salih SS, Ghosh TK (2018) Highly efficient competitive removal of Pb(II) and Ni(II) by chitosan/diatomaceous earth composite. J Environ Chem Eng 6(1):435–443

    Article  CAS  Google Scholar 

  3. Arcibar-Orozco JA, Rangel-Mendez JR, Diaz-Flores PE (2015) Simultaneous adsorption of Pb(Ii)-Cd(Ii), Pb(Ii)-phenol, and Cd(Ii)-phenol by activated carbon cloth in aqueous solution. Water Air Soil Pollut 226(1):1–10

    Article  Google Scholar 

  4. Istratie R, Stoia M, Păcurariu C, Locovei C (2019) Single and simultaneous adsorption of methyl orange and phenol onto magnetic iron oxide/carbon nanocomposites. Arab J Chem 12(8):3704–3722

    Article  CAS  Google Scholar 

  5. Wang P, Tyndall S, Rahman T, Roy P, Jahromi H, Adhikari S, Boersma M (2022) Sorption and recovery of phenolic compounds from aqueous phase of sewage sludge hydrothermal liquefaction using bio-char. Chemosphere 287:131934

    Article  CAS  PubMed  Google Scholar 

  6. Chakraborty R, Asthana A, Singh AK, Jain B, Susan ABH (2022) Adsorption of heavy metal ions by various low-cost adsorbents: a review. Int J Environ Anal Chem 102(2):342–379

    Article  CAS  Google Scholar 

  7. Salih SS, Ghosh TK (2017) Preparation and characterization of bioadsorbent beads for chromium and zinc ions adsorption. Cogent Environ Sci 3(1):1401577

    Article  Google Scholar 

  8. Saleh TA, Tuzen M, Sarı A, Altunay N (2022) Factorial design, physical studies and rapid arsenic adsorption using newly prepared polymer modified perlite adsorbent. Chem Eng Res Des. https://doi.org/10.1016/j.cherd.2022.04.042

    Article  Google Scholar 

  9. Tuzen M (2019) Development of tetraethylene pentamine functionalized multi-wall carbon nanotubes as a new adsorbent in a syringe system for removal of bisphenol A by using multivariate optimization techniques. Microchem J 147:1147–1154

    Article  Google Scholar 

  10. Pouya ES, Abolghasemi H, Esmaieli M, Fatoorehchi H, Hashemi SJ, Salehpour A (2015) Batch adsorptive removal of benzoic acid from aqueous solution onto modified natural vermiculite: kinetic, isotherm and thermodynamic studies. J Ind Eng Chem 31:199–215

    Article  CAS  Google Scholar 

  11. Salih SS, Ghosh TK (2018) Preparation and characterization of chitosan-coated diatomaceous earth for hexavalent chromium removal. Environ Process 5(1):23–39

    Article  CAS  Google Scholar 

  12. Du Z, Deng S, Zhang S, Wang W, Wang B, Huang J, Xing B (2017) Selective and fast adsorption of perfluorooctanesulfonate from wastewater by magnetic fluorinated vermiculite. Environ Sci Technol 51(14):8027–8035

    Article  CAS  PubMed  Google Scholar 

  13. Salih SS, Mahdi A, Kadhom M, Ghosh TK (2019) Competitive adsorption of As(III) and As(V) onto chitosan/diatomaceous earth adsorbent. J Environ Chem Eng 7(5):103407

    Article  CAS  Google Scholar 

  14. Saleh TA, Sarı A, Tuzen M (2019) Carbon nanotubes grafted with poly(trimesoyl, m-phenylenediamine) for enhanced removal of phenol. J Environ Manag 252:109660

    Article  CAS  Google Scholar 

  15. dos Anjos VE, Rohwedder JR, Cadore S, Abate G, Grassi MT (2014) Montmorillonite and vermiculite as solid phases for the preconcentration of trace elements in natural waters: adsorption and desorption studies of As, Ba, Cu, Cd Co, Cr, Mn, Ni, Pb, Sr, V, and Zn. Appl Clay Sci 99:289–296

    Article  Google Scholar 

  16. Vijayaraghavan K, Raja FD (2015) Interaction of vermiculite with Pb(II), Cd(II), Cu(II) and Ni(II) ions in single and quaternary mixtures. Clean: Soil, Air, Water 43(8):1174–1180

    CAS  Google Scholar 

  17. Mazloomi F, Jalali M (2017) Adsorption of ammonium from simulated wastewater by montmorillonite nanoclay and natural vermiculite: experimental study and simulation. Environ Monit Assess 189(8):1–19

    Article  CAS  Google Scholar 

  18. Stawiński W, Węgrzyn A, Freitas O, Chmielarz L, Mordarski G, Figueiredo S (2017) Simultaneous removal of dyes and metal cations using an acid, acid–base and base modified vermiculite as a sustainable and recyclable adsorbent. Sci Total Environ 576:398–408

    Article  PubMed  Google Scholar 

  19. Hashem FS, Amin MS, El-Gamal SMA (2015) Chemical activation of vermiculite to produce highly efficient material for Pb2+ and Cd2+ removal. Appl Clay Sci 115:189–200

    Article  CAS  Google Scholar 

  20. Zhao F, Repo E, Yin D, Sillanpää ME (2013) Adsorption of Cd(II) and Pb(II) by a novel EGTA-modified chitosan material: kinetics and isotherms. J Colloid Interface Sci 409:174–182

    Article  CAS  PubMed  Google Scholar 

  21. Saleh TA, Sarı A, Tuzen M (2016) Chitosan-modified vermiculite for As(III) adsorption from aqueous solution: equilibrium, thermodynamic and kinetic studies. J Mol Liq 219:937–945

    Article  CAS  Google Scholar 

  22. Hande PE, Kamble S, Samui AB, Kulkarni PS (2016) Chitosan-based lead ion-imprinted interpenetrating polymer network by simultaneous polymerization for selective extraction of lead(II). Ind Eng Chem Res 55(12):3668–3678

    Article  CAS  Google Scholar 

  23. de Araújo EL, Barbosa HFG, Dockal ER, Cavalheiro ÉTG (2017) Synthesis, characterization and biological activity of Cu(II), Ni(II) and Zn(II) complexes of biopolymeric Schiff bases of salicylaldehydes and chitosan. Int J Biol Macromol 95:168–176

    Article  PubMed  Google Scholar 

  24. Pourbeyram S (2016) Effective removal of heavy metals from aqueous solutions by graphene oxide–zirconium phosphate (GO–Zr-P) nanocomposite. Ind Eng Chem Res 55(19):5608–5617

    Article  CAS  Google Scholar 

  25. Osorio-Madrazo A, David L, Trombotto S, Lucas JM, Peniche-Covas C, Domard A (2010) Kinetics study of the solid-state acid hydrolysis of chitosan: evolution of the crystallinity and macromolecular structure. Biomacromol 11(5):1376–1386

    Article  CAS  Google Scholar 

  26. Li K, Bian S, Zhen W, Li H, Zhao L (2021) Performance, crystallization and rheological behavior of poly(lactic acid)/N-(2-hydroxyl) propyl-3-trimethyl ammonium chitosan chloride intercalated vermiculite grafted poly (acrylamide) nanocomposites. React Funct Polym 158:104791

    Article  CAS  Google Scholar 

  27. Salih SS, Mohammed HN, Abdullah GH, Kadhom M, Ghosh TK (2020) Simultaneous removal of Cu(II), Cd(II), and industrial dye onto a composite chitosan biosorbent. J Polym Environ 28(1):354–365

    Article  CAS  Google Scholar 

  28. Padilla-Ortega E, Leyva-Ramos R, Mendoza-Barron J (2014) Role of electrostatic interactions in the adsorption of cadmium(II) from aqueous solution onto vermiculite. Appl Clay Sci 88:10–17

    Article  Google Scholar 

  29. Kumari HJ, Krishnamoorthy P, Arumugam TK, Radhakrishnan S, Vasudevan D (2017) An efficient removal of crystal violet dye from waste water by adsorption onto TLAC/chitosan composite: a novel low cost adsorbent. Int J Biol Macromol 96:324–333

    Article  Google Scholar 

  30. Abdel-Ghani NT, El-Chaghaby GA, Helal FS (2015) Individual and competitive adsorption of phenol and nickel onto multiwalled carbon nanotubes. J Adv Res 6(3):405–415

    Article  CAS  PubMed  Google Scholar 

  31. Alizadeh B, Delnavaz M, Shakeri A (2018) Removal of Cd(ӀӀ) and phenol using novel cross-linked magnetic EDTA/chitosan/TiO2 nanocomposite. Carbohydr Polym 181:675–683

    Article  CAS  PubMed  Google Scholar 

  32. Asmaly HA, Ihsanullah AB, Saleh TA, Laoui T, Gupta VK, Atieh MA (2016) Adsorption of phenol on aluminum oxide impregnated fly ash. Desalin Water Treat 57(15):6801–6808

    Article  CAS  Google Scholar 

  33. Wang N, Xu X, Li H, Yuan L, Yu H (2016) Enhanced selective adsorption of Pb(II) from aqueous solutions by one-pot synthesis of xanthate-modified chitosan sponge: behaviors and mechanisms. Ind Eng Chem Res 55(47):12222–12231

    Article  CAS  Google Scholar 

  34. Wang G, Zhang S, Hua Y, Su X, Ma S, Wang J, Komarneni S (2017) Phenol and/or Zn2+ adsorption by single-or dual-cation organomontmorillonites. Appl Clay Sci 140:1–9

    Article  Google Scholar 

  35. Singh DK, Kumar V, Mohan S, Hasan SH (2017) Polylysine functionalized graphene aerogel for the enhanced removal of Cr(VI) through adsorption: kinetic, isotherm, and thermodynamic modeling of the process. J Chem Eng Data 62(5):1732–1742

    Article  CAS  Google Scholar 

  36. Şenol ZM, Şimşek S (2020) Equilibrium, kinetics and thermodynamics of Pb(II) ions from aqueous solution by adsorption onto chitosan-dolomite composite beads. Int J Environ Anal Chem. https://doi.org/10.1080/03067319.2020.1790546

    Article  Google Scholar 

  37. Xu J, Liu X, Lowry GV, Cao Z, Zhao H, Zhou JL, Xu X (2016) Dechlorination mechanism of 2,4-dichlorophenol by magnetic MWCNTs supported Pd/Fe nanohybrids: rapid adsorption, gradual dechlorination, and desorption of phenol. ACS Appl Mater Interfaces 8(11):7333–7342

    Article  CAS  PubMed  Google Scholar 

  38. Tran L, Wu P, Zhu Y, Liu S, Zhu N (2015) Comparative study of Hg(II) adsorption by thiol-and hydroxyl-containing bifunctional montmorillonite and vermiculite. Appl Surf Sci 356:91–101

    Article  CAS  Google Scholar 

  39. Şenol ZM (2021) A chitosan-based composite for adsorption of uranyl ions; mechanism, isotherms, kinetics and thermodynamics. Int J Biol Macromol 183:1640–1648

    Article  PubMed  Google Scholar 

  40. Şenol ZM, Şimşek S (2022) Insights into effective adsorption of lead ions from aqueous solutions by using chitosan-bentonite composite beads. J Polym Environ. https://doi.org/10.1007/s10924-022-02464-8

    Article  Google Scholar 

  41. Liu S, Wu P, Yu L, Li L, Gong B, Zhu N, Yang C (2017) Preparation and characterization of organo-vermiculite based on phosphatidylcholine and adsorption of two typical antibiotics. Appl Clay Sci 137:160–167

    Article  CAS  Google Scholar 

  42. Saleh TA, Sarı A, Tuzen M (2017) Effective adsorption of antimony(III) from aqueous solutions by polyamide-graphene composite as a novel adsorbent. Chem Eng J 307:230–238

    Article  CAS  Google Scholar 

  43. Şenol ZM, Gürsoy N, Şimşek S, Özer A, Karakuş N (2020) Removal of food dyes from aqueous solution by chitosan-vermiculite beads. Int J Biol Macromol 148:635–646

    Article  PubMed  Google Scholar 

  44. Li X, Wang S, Liu Y, Jiang L, Song B, Li M, Ding Y (2017) Adsorption of Cu(II), Pb(II), and Cd(II) ions from acidic aqueous solutions by diethylenetriaminepentaacetic acid-modified magnetic graphene oxide. J Chem Eng Data 62(1):407–416

    Article  CAS  Google Scholar 

  45. Şenol ZM, Şimşek S, Özer A, Şenol Arslan D (2021) Synthesis and characterization of chitosan–vermiculite composite beads for removal of uranyl ions: isotherm, kinetics and thermodynamics studies. J Radioanal Nucl Chem 327(1):159–173

    Article  Google Scholar 

  46. Şimşek S, Kaya S, Şenol ZM, Ulusoy Hİ, Katin KP, Özer A, Brahmia A (2022) Theoretical and experimental insights about the adsorption of uranyl ion on a new designed vermiculite-polymer composite. J Mol Liq 352:118727

    Article  Google Scholar 

  47. Şenol ZM, Kaya S, Şimşek S, Katin KP, Özer A, Marzouki R (2022) Synthesis and characterization of chitosan-vermiculite-lignin ternary composite as an adsorbent for effective removal of uranyl ions from aqueous solution: experimental and theoretical analyses. Int J Biol Macromol 209:1234–1247

    Article  PubMed  Google Scholar 

  48. Cheng WP, Gao W, Cui X, Ma JH, Li RF (2016) Phenol adsorption equilibrium and kinetics on zeolite X/activated carbon composite. J Taiwan Inst Chem Eng 62:192–198

    Article  CAS  Google Scholar 

  49. Ma L, Chen Q, Zhu J, Xi Y, He H, Zhu R, Ayoko GA (2016) Adsorption of phenol and Cu(II) onto cationic and zwitterionic surfactant modified montmorillonite in single and binary systems. Chem Eng J 283:880–888

    Article  CAS  Google Scholar 

  50. Wang Y, Li L, Luo C, Wang X, Duan H (2016) Removal of Pb2+ from water environment using a novel magnetic chitosan/graphene oxide imprinted Pb2+. Int J Biol Macromol 86:505–511

    Article  CAS  PubMed  Google Scholar 

  51. Ngah WW, Fatinathan S (2010) Adsorption characterization of Pb(II) and Cu(II) ions onto chitosan-tripolyphosphate beads: kinetic, equilibrium and thermodynamic studies. J Environ Manag 91(4):958–969

    Article  CAS  Google Scholar 

  52. do Nascimento FH, de Souza Costa DM, Masini JC (2016) Evaluation of thiol-modified vermiculite for removal of Hg(II) from aqueous solutions. Appl Clay Sci 124:227–235

    Article  Google Scholar 

  53. Huang Y, Fulton AN, Keller AA (2016) Simultaneous removal of PAHs and metal contaminants from water using magnetic nanoparticle adsorbents. Sci Total Environ 571:1029–1036

    Article  CAS  PubMed  Google Scholar 

  54. Lin SH, Juang RS (2009) Adsorption of phenol and its derivatives from water using synthetic resins and low-cost natural adsorbents: a review. J Environ Manag 90(3):1336–1349

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the Nuclear Science and Engineering Institute at the University of Missouri-Columbia, USA for allowing us working in their laboratories. In addition, the authors thank the Chemical Engineering Department at the University of Tikrit, Iraq for financial support of the experimental studies.

Funding

The authors have not disclosed any funding.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Suhaib S. Salih.

Ethics declarations

Competing Interests

The authors have not disclosed any competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Salih, S.S., Kadhom, M., Shihab, M.A. et al. Competitive Adsorption of Pb(II) and Phenol Onto Modified Chitosan/Vermiculite Adsorbents. J Polym Environ 30, 4238–4251 (2022). https://doi.org/10.1007/s10924-022-02515-0

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10924-022-02515-0

Keywords

Navigation