Skip to main content
Log in

Extraction, characterization, and fabrication of cellulose biopolymer sheets from Pistia stratiotes as a biodegradative coating material: an unique strategy for the conversion of invasive weeds into value-added products

  • Original Paper
  • Published:
Journal of Polymers and the Environment Aims and scope Submit manuscript

Abstract

This study explores the possibility of using Water lettuce (Pistia stratiotes) as a cost-effective substrate for the commercial extraction of cellulose biopolymer using a wide variety of physicochemical treatment methods to compare their efficiency in cellulose extraction. The extraction of cellulose from water lettuce, although promising due to their high cellulose content, was less explored as per the available literature. In this study, functional properties like bulk density-packed density, hydrated density, water retention capacity, oil retention capacity, emulsifying activity and setting volume of the extracted cellulose were studied. The cellulose content from water lettuce was found to be 38.94 ± 0.10% by anthrone method. Preliminary confirmation of cellulose biopolymer was done using the study of functional groups using Fourier Transform Infrared (FT-IR) analysis. Further characterization studies like Scanning Electron Microscopy (SEM), X- Ray Diffraction (XRD), Differential Scanning Calorimetry (DSC) and thermogravimetric analysis (TGA) were conducted to understand the molecular architecture and purity of the cellulose extracted. Fabrication of cellulose sheets was carried out using starch as the plasticizer. Biodegradation studies were conducted in garden soil for four weeks and a high degradation rate of 78.22 ± 0.71% was observed in the fourth week of soil burial.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Keller RP, Masoodi A, Shackleton RT (2018) The impact of invasive aquatic plants on ecosystem services and human well-being in Wular Lake, India. Reg Envriron Chang 18(3):847–857

    Article  Google Scholar 

  2. Pejchar L, Mooney HA (2009) Invasive species, ecosystem services and human well-being. Trends Ecol Evol 24(9):497–504

    Article  PubMed  Google Scholar 

  3. Hasanov I, Shanmugam S, Kikas T (2022) Extraction and isolation of lignin from ash tree (Fraxinus exselsior) with protic ionic liquids (PILs). Chemosphere 290:133297

    Article  PubMed  CAS  Google Scholar 

  4. Krumm C, Pfaendtner J, Dauenhauer PJ (2016) Millisecond pulsed films unify the mechanisms of cellulose fragmentation. Chem Mater 28(9):3108–3114

    Article  CAS  Google Scholar 

  5. Sassner P, Galbe M, Zacchi G (2008) Techno-economic evaluation of bioethanol production from three different lignocellulosic materials. Biomass Bioenergy 32(5):422–430

    Article  CAS  Google Scholar 

  6. Sundari MT, Ramesh A (2012) Isolation and characterization of cellulose nanofibers from the aquatic weed water hyacinth—Eichhornia crassipes. Carbohydr Polym 87(2):1701–1705

    Article  CAS  Google Scholar 

  7. Faruk O et al (2012) Biocomposites reinforced with natural fibers: 2000–2010. Prog Polym Sci 37(11):1552–1596

    Article  CAS  Google Scholar 

  8. Bao J, Li J (2011) The effect of surface treatment on the mechanical properties of glass fiber reinforced polyamide 6 composite. in Applied Mechanics and Materials. Trans Tech Publ

  9. Kalia S et al (2011) Cellulose-based bio-and nanocomposites: a review. International journal of polymer science, 2011

  10. Karimi S et al (2014) Kenaf bast cellulosic fibers hierarchy: a comprehensive approach from micro to nano. Carbohydr Polym 101:878–885

    Article  PubMed  CAS  Google Scholar 

  11. Majeed K et al (2013) Potential materials for food packaging from nanoclay/natural fibres filled hybrid composites. Mater Design 46:391–410

    Article  CAS  Google Scholar 

  12. Alemdar A, Sain M (2008) Biocomposites from wheat straw nanofibers: Morphology, thermal and mechanical properties. Compos Sci Technol 68(2):557–565

    Article  CAS  Google Scholar 

  13. Packiam KK et al (2021) Extraction, Purification and Characterization of Nanocrystalline Cellulose from Eichhornia crassipes (Mart.) Solms: A Common Aquatic Weed Water Hyacinth.Journal of Natural Fibers, : p.1–12

  14. Kodituwakku K, Yatawara M (2020) Phytoremediation of industrial sewage sludge with Eichhornia crassipes, Salvinia molesta and Pistia stratiotes in batch fed free water flow constructed wetlands. Bull Environ Contam Toxicol 104(5):627–633

    Article  PubMed  CAS  Google Scholar 

  15. Bhattacharya D, Germinario LT, Winter WT (2008) Isolation, preparation and characterization of cellulose microfibers obtained from bagasse. Carbohydr Polym 73(3):371–377

    Article  CAS  Google Scholar 

  16. Wang Z et al (2019) Isolation and characterization of cellulose nanocrystals from pueraria root residue. Int J Biol Macromol 129:1081–1089

    Article  PubMed  CAS  Google Scholar 

  17. Wu J et al (2019) Preparation and characterization of cellulose nanofibrils from coconut coir fibers and their reinforcements in biodegradable composite films. Carbohydr Polym 211:49–56

    Article  PubMed  CAS  Google Scholar 

  18. Ventura-Cruz S, Tecante A (2019) Extraction and characterization of cellulose nanofibers from Rose stems (Rosa spp.). Carbohydr Polym 220:53–59

    Article  PubMed  CAS  Google Scholar 

  19. Reshmy R et al (2021) A green biorefinery platform for cost-effective nanocellulose production: investigation of hydrodynamic properties and biodegradability of thin films. Biomass Convers Biorefinery 11(3):861–870

    Article  CAS  Google Scholar 

  20. Reshmy R et al (2021) Development of an eco-friendly biodegradable plastic from jack fruit peel cellulose with different plasticizers and Boswellia serrata as filler. Sci Total Environ 767:144285

    Article  PubMed  CAS  Google Scholar 

  21. Qian C et al (2020) Determination of saccharides in environments using a sulfuric acid-fluorescence approach. Environ Sci Technol 54(11):6632–6638

    Article  PubMed  CAS  Google Scholar 

  22. Gichuki J et al (2022) Characteristics of Microcrystalline Cellulose from Coir Fibers. J Nat Fibers 19(3):915–930

    Article  CAS  Google Scholar 

  23. Prakongpan T, Nitithamyong A, Luangpituksa P (2002) Extraction and application of dietary fiber and cellulose from pineapple cores. J Food Sci 67(4):1308–1313

    Article  CAS  Google Scholar 

  24. Singanusong R et al (2014) Extraction and properties of cellulose from banana peels. Suranaree J Sci Technol 21(3):201–213

    Google Scholar 

  25. Trilokesh C, Uppuluri KB (2019) Isolation and characterization of cellulose nanocrystals from jackfruit peel. Sci Rep 9(1):1–8

    Article  CAS  Google Scholar 

  26. Jonoobi M et al (2009) Chemical composition, crystallinity and thermal degradation of bleached and unbleached kenaf bast (Hibiscus cannabinus) pulp and nanofiber. BioResources 4(2):626–639

    CAS  Google Scholar 

  27. Shi J et al (2011) A chemical process for preparing cellulosic fibers hierarchically from kenaf bast fibers. BioResources 6(1):879–890

    Article  CAS  Google Scholar 

  28. Zainuddin SYZ et al (2013) Potential of using multiscale kenaf fibers as reinforcing filler in cassava starch-kenaf biocomposites. Carbohydr Polym 92(2):2299–2305

    Article  PubMed  CAS  Google Scholar 

  29. Melikoğlu AY, Bilek SE, Cesur S (2019) Optimum alkaline treatment parameters for the extraction of cellulose and production of cellulose nanocrystals from apple pomace. Carbohydr Polym 215:330–337

    Article  PubMed  Google Scholar 

  30. Chanda S, Bhaduri SK, Sardar D (1991) Chemical characterization of pressed fibrous residues of four aquatic weeds. Aquat Bot 42(1):81–85

    Article  CAS  Google Scholar 

  31. Lu P, Hsieh Y-L (2010) Preparation and properties of cellulose nanocrystals: rods, spheres, and network. Carbohydr Polym 82(2):329–336

    Article  Google Scholar 

  32. Luzi F et al (2019) Valorization and extraction of cellulose nanocrystals from North African grass: Ampelodesmos mauritanicus (Diss). Carbohydr Polym 209:328–337

    Article  PubMed  CAS  Google Scholar 

  33. Reddy KO, Guduri B, Rajulu AV (2009) Structural characterization and tensile properties of borassus fruit fibers. J Appl Polym Sci 114(1):603–611

    Article  CAS  Google Scholar 

  34. Mandal A, Chakrabarty D (2011) Isolation of nanocellulose from waste sugarcane bagasse (SCB) and its characterization. Carbohydr Polym 86(3):1291–1299

    Article  CAS  Google Scholar 

  35. Maheswari CU et al (2012) Extraction and characterization of cellulose microfibrils from agricultural residue–Cocos nucifera L. Biomass Bioenergy 46:555–563

    Article  Google Scholar 

  36. Jmel MA et al (2019) The stranded macroalga Ulva lactuca as a new alternative source of cellulose: Extraction, physicochemical and rheological characterization. J Clean Prod 234:1421–1427

    Article  CAS  Google Scholar 

  37. Sain M, Panthapulakkal S (2006) Bioprocess preparation of wheat straw fibers and their characterization. Ind Crops Prod 23(1):1–8

    Article  CAS  Google Scholar 

  38. Meng F et al (2019) Extraction and characterization of cellulose nanofibers and nanocrystals from liquefied banana pseudo-stem residue. Compos Part B: Eng 160:341–347

    Article  CAS  Google Scholar 

  39. Johar N, Ahmad I, Dufresne A (2012) Extraction, preparation and characterization of cellulose fibres and nanocrystals from rice husk. Ind Crops Prod 37(1):93–99

    Article  CAS  Google Scholar 

  40. Elanthikkal S et al (2010) Cellulose microfibres produced from banana plant wastes: Isolation and characterization. Carbohydr Polym 80(3):852–859

    Article  CAS  Google Scholar 

  41. Bogolitsyn K et al (2014) Chemical composition of extractives of normal and rotten aspen (Populus tremula) wood. Russ Chem Bull 63(9):2169–2174

    Article  CAS  Google Scholar 

  42. Zhang H et al (2020) Extraction and comparison of cellulose nanocrystals from lemon (Citrus limon) seeds using sulfuric acid hydrolysis and oxidation methods. Carbohydr Polym 238:116180

    Article  PubMed  CAS  Google Scholar 

  43. Kale RD, Taye M, Chaudhary B (2019) Extraction and characterization of cellulose single fiber from native Ethiopian Serte (Dracaena steudneri Egler) plant leaf. J Macromolecular Sci Part A 56(9):837–844

    Article  CAS  Google Scholar 

  44. Yeng LC, Wahit MU, Othman N (2015) Thermal and flexural properties of regenerated cellulose (RC)/poly (3-hydroxybutyrate)(PHB) biocomposites.Jurnal Teknologi, 75(11)

  45. Szcześniak L, Rachocki A, Tritt-Goc J (2008) Glass transition temperature and thermal decomposition of cellulose powder. Cellulose 15(3):445–451

    Article  Google Scholar 

  46. Picker KM, Hoag SW (2002) Characterization of the thermal properties of microcrystalline cellulose by modulated temperature differential scanning calorimetry. J Pharm Sci 91(2):342–349

    Article  PubMed  CAS  Google Scholar 

  47. Gouda MK, Swellam AE, Omar SH (2001) Production of PHB by a Bacillus megaterium strain using sugarcane molasses and corn steep liquor as sole carbon and nitrogen sources. Microbiol Res 156(3):201–207

    Article  PubMed  CAS  Google Scholar 

  48. Lucas N et al (2008) Polymer biodegradation: Mechanisms and estimation techniques–A review. Chemosphere 73(4):429–442

    Article  PubMed  CAS  Google Scholar 

  49. Zhao G et al (2019) Biodegradable and transparent cellulose film prepared eco-friendly from durian rind for packaging application. Food Packaging and Shelf Life 21:100345

    Article  Google Scholar 

  50. Ai B et al (2021) Biodegradable cellulose film prepared from banana pseudo-stem using an ionic liquid for mango preservation. Front Plant Sci 12:234

    Article  Google Scholar 

Download references

Acknowledgements

Authors are indebted to the Department of Life Sciences, CHRIST (Deemed to be University), Bengaluru, Karnataka, India for providing the necessary facilities to execute the planned research work. This project was supported by Researchers Supporting Project number (RSP-2021/283) King Saud University, Riyadh, Saudi Arabia. The authors would like to thank Van Lang University, Vietnam for funding this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Arivalagan Pugazhendhi.

Ethics declarations

Competing interests:

The authors declare no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Umesh, M., Santhosh, A.S., Shanmugam, S. et al. Extraction, characterization, and fabrication of cellulose biopolymer sheets from Pistia stratiotes as a biodegradative coating material: an unique strategy for the conversion of invasive weeds into value-added products. J Polym Environ 30, 5057–5068 (2022). https://doi.org/10.1007/s10924-022-02511-4

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10924-022-02511-4

Keywords

Navigation