Skip to main content
Log in

Biodegradable Star-Shaped Poly(lactic acid): Synthesis, Characterization and Its Reaction Kinetics

  • Original Paper
  • Published:
Journal of Polymers and the Environment Aims and scope Submit manuscript

Abstract

Biodegradable four-arm star-shaped poly(lactic acid) (4sPLA) was synthesized from l-Lactic acid (l-LA) and pentaerythritol (PENTA), and the polymerization kinetics was studied. The effects of reaction time, reaction temperature and molar ratio on the polymerization of 4sPLA were discussed. The molecular structure of 4sPLA was characterized by Fourier transform infrared spectroscopy (FTIR) and 1H nuclear magnetic resonance spectra (1H-NMR). The results showed that the optimum reaction conditions were as follows: the molar ratio of l-LA to PENTA was 12:1, and the polymerization reaction occurred at 160 ℃ for 5 h. Gel permeation chromatography method was used to determine the polymerization kinetics of 4sPLA consistent with the first-order reaction kinetics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Norazlina H, Kamal Y (2015) Polym Bull 72:931–961

    Article  CAS  Google Scholar 

  2. Garlotta D (2001) J Polym Environ 9:63–84

    Article  CAS  Google Scholar 

  3. Zaaba NF, Jaafar M (2020) Polym Eng Sci 60:2061–2075

    Article  CAS  Google Scholar 

  4. Braun B, Dorgan JR, Knauss DM (2006) J Polym Environ 14:49–58

    Article  CAS  Google Scholar 

  5. Abu Ghalia M, Dahman Y (2018) J Polym Environ 26:1903–1919

    Article  CAS  Google Scholar 

  6. Liao QH, Peng XF, Fang H, Turng LS, Huang A, Chang CC (2020) J Polym Environ 28:295–303

    Article  CAS  Google Scholar 

  7. Jiang N, Yu T, Li Y, Pirzada TJ, Marrow TJ (2019) Compos Sci Technol 173:15–23

    Article  CAS  Google Scholar 

  8. Burgos N, Tolaguera D, Fiori S, Jimenez A (2014) J Polym Environ 22:227–235

    Article  CAS  Google Scholar 

  9. Zheng L, Geng ZX, Zhen WJ (2019) J Polym Res 26:78

    Article  CAS  Google Scholar 

  10. Fang F, Huo SQ, Shen HF, Ran SY, Wang H, Song PA, Fang ZP (2020) Compos Commun 17:104–108

    Article  Google Scholar 

  11. Fang F, Ran SY, Fang ZP, Song PA, Wang H (2019) Compos Part B-Eng 165:406–416

    Article  CAS  Google Scholar 

  12. Sai T, Ran SY, Guo ZH, Yan HQ, Zhang Y, Wang H, Song PG, Fang ZP (2021) Chem Eng J 409:128223

    Article  CAS  Google Scholar 

  13. Chomachayi MD, Jalali-arani A, Urreaga JM (2021) J Polym Environ 29:2585–2597

    Article  CAS  Google Scholar 

  14. Chen P, Yu KS, Wang YQ, Wang WB, Zhou HF, Li HQ, Mi JG, Wang XD (2018) J Polym Environ 26:3718–3730

    Article  CAS  Google Scholar 

  15. Shin BY, Han DH, Narayan R (2010) J Polym Environ 18:558–566

    Article  CAS  Google Scholar 

  16. Michalski A, Brzezinski M, Lapienis G, Biela T (2019) Prog Polym Sci 89:159–212

    Article  CAS  Google Scholar 

  17. Jahandideh A, Muthukumarappan K (2017) Eur Polym J 87:360–379

    Article  CAS  Google Scholar 

  18. Hachana N, Wongwanchai T, Chaochanchaikul K, Harnnarongchai W (2017) J Polym Environ 25:323–333

    Article  CAS  Google Scholar 

  19. Yan XQ, Li JB, Ren TB (2018) E-Polymers 18:559–568

    Article  CAS  Google Scholar 

  20. Jing ZX, Shi XT, Zhang GC (2016) Polym Composite 37:2744–2755

    Article  CAS  Google Scholar 

  21. Lee SH, Kim SH, Han YK, Kim YH (2001) J Polym Sci Pol Chem 39:973–985

    Article  CAS  Google Scholar 

  22. Esmaeili N, Jahandideh A, Muthukumarappan K, Akesson D, Skrifvars M (2017) J Appl Polym Sci 134:45341

    Article  CAS  Google Scholar 

  23. Choi EJ, Son B, Hwang TS, Hwang EH (2011) J Ind Eng Chem 17:691–695

    Article  CAS  Google Scholar 

  24. Salaam LE, Dean D, Bray TL (2006) Polymer 47:310–318

    Article  CAS  Google Scholar 

  25. Zhang CX, Wang B, Chen Y, Cheng F, Jiang SC (2012) Polymer 53:3900–3909

    Article  CAS  Google Scholar 

  26. Cameron DJA, Shaver MP (2011) Chem Soc Rev 40:1761–1776

    Article  CAS  PubMed  Google Scholar 

  27. Yuan MW, He ZG, Li HL, Jiang L, Yuan ML (2014) Polym Bull 71:1331–1347

    Article  CAS  Google Scholar 

  28. Gorczynski JL, Chen JB, Fraser CL (2005) J Am Chem Soc 127:14956–14957

    Article  CAS  PubMed  Google Scholar 

  29. Tsuji H, Miyase T, Tezuka Y, Saha SK (2005) Biomacromol 6:244–254

    Article  CAS  Google Scholar 

  30. Costa LI, Tancini F, Hofmann S, Codari F, Trommsdorff U (2016) Macromol Symp 360:40–48

    Article  CAS  Google Scholar 

  31. Chu SL, Li X, Robertson AW, Sun ZY (2021) Acta Phys-Chim Sin 37:2009023

    Google Scholar 

  32. Medina DA, Contreras JM, Lopez-Carrasquero FJ, Cardozo EJ, Contreras RR (2018) Polym Bull 75:1253–1263

    Article  CAS  Google Scholar 

  33. Moravek SJ, Messman JM, Storey RF (2009) J Polym Sci Pol Chem 47:797–803

    Article  CAS  Google Scholar 

  34. George KA, Schue F, Chirila TV, Wentrup-Byrne E (2009) J Polym Sci Pol Chem 47:4736–4748

    Article  CAS  Google Scholar 

  35. Burdick JA, Lovestead TM, Anseth KS (2003) Biomacromol 4:149–156

    Article  CAS  Google Scholar 

  36. Sekkar V, Devi KA, Ninan KN (2001) J Appl Polym Sci 79:1869–1876

    Article  CAS  Google Scholar 

  37. Fukuda T (2004) J Polym Sci Pol Chem 42:4743–4755

    Article  CAS  Google Scholar 

  38. Akesson D, Skrifvars M, Seppala J, Turunen M, Martinelli A, Matic A (2010) J Appl Polym Sci 115:480–486

    Article  CAS  Google Scholar 

  39. Jahandideh A, Muthukumarappan K (2016) Eur Polym J 83:344–358

    Article  CAS  Google Scholar 

  40. Bakare FO, Ramamoorthy SK, Akesson D, Skrifvars M (2016) Compos Part a-Appl S 83:176–184

    Article  CAS  Google Scholar 

  41. Zhao YL, Qing C, Jing J, Shuai XT, Bei JZ, Chen CF, Fu X (2002) Polymer 43:5819–5825

    Article  CAS  Google Scholar 

  42. Ehsani M, Khodabakhshi K, Asgari M (2014) E-Polymers 14:353–361

    Article  CAS  Google Scholar 

  43. Eldessouki M, Buschle-Diller G, Gowayed Y (2016) Des Monomers Polym 19:180–192

    Article  CAS  Google Scholar 

  44. Kundys A, Plichta A, Florjanczyk Z, Zychewicz A, Lisowska P, Parzuchowski P, Wawrzynska E (2016) Polym Int 65:927–937

    Article  CAS  Google Scholar 

  45. Nagahama K, Ohya Y, Ouchi T (2006) Polym J 38:852–860

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work is supported by National Natural Science Foundation of China (No. 11872279, No. 12172258 and No. 11625210) and Natural Science Foundation of Shanghai (No. 18ZR1440700).

Funding

Funding was provided by National Natural Science Foundation of China (Grant Nos.: 11872279, 12172258, 11625210) and by Natural Science Foundation of Shanghai (Grant No.: 18ZR1440700)

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tao Yu.

Ethics declarations

Competing Interests

There are no competing interests to declare.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

He, J., Yu, T., Yang, W. et al. Biodegradable Star-Shaped Poly(lactic acid): Synthesis, Characterization and Its Reaction Kinetics. J Polym Environ 30, 3121–3128 (2022). https://doi.org/10.1007/s10924-022-02416-2

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10924-022-02416-2

Keywords

Navigation