Skip to main content
Log in

Development of Alginate-Chitosan Based Coating Enriched with ZnO Nanoparticles for Increasing the Shelf Life of Orange Fruits (Citrus sinensis L.)

  • Original Paper
  • Published:
Journal of Polymers and the Environment Aims and scope Submit manuscript

Abstract

Edible coatings act as a protective layer surrounding fruits and vegetables, extending their shelf life. The impact of sodium alginate (SA) 1% and chitosan (CH) 0.5% layering supplemented with nano zinc oxide (ZnO) (0.50 g/L) on orange quality was investigated for 20 days at 4 °C in this study. For the test samples of oranges, the effects of coatings on quality parameters (pH, weight loss, firmness, total soluble solids, total acidity, antioxidant, ascorbic acid, respiration rate, decay rate, antioxidant enzymes, and microbiological evaluation) were examined. During the 20-day period, the coatings had a substantial impact on the quality parameters when compared to the control (non-coated oranges). Oranges with coatings had a decreased rate of change in pH, total soluble solids, and total acidity when compared to control. Oranges coated with CH + nano-ZnO had the least weight loss, firmness, ascorbic acid concentration, respiration rate, and microbial development. The CH + nano-ZnO coated samples also had the best antioxidant activity. Polyphenol oxidase and peroxidase activity were also significantly reduced, whereas, control exhibited a significant increase. According to the current study, coatings with CH + nano-ZnO can extend the shelf life of oranges by up to 20 days.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Sharma N, Tiwari R (2014) Bio-bullets for postharvest diseases of horticultural perishables. Biol Controls Prev Food Deterior 22:41

    Article  Google Scholar 

  2. Gustavsson J et al (2011) Global food losses and food waste. FAO, Rome

    Google Scholar 

  3. De la Fuente-Salcido N et al (2019) Polymers and nanotechnology, the new face of bioactive edible coatings. Polym Res Commun Curr Adv Contrib Appl Educ Asp. 83:27–35

    Google Scholar 

  4. Food and Agriculture Organisation (2009) How to feed the world in 2050. Insights from an Expert Meeting at FAO

  5. Singh V et al (2014) Postharvest technology of fruits and vegetables: an overview. J Postharvest Technol 2(2):124–135

    Google Scholar 

  6. Youssef AM et al (2020) Synthesis and evaluation of eco-friendly carboxymethyl cellulose/polyvinyl alcohol/CuO bionanocomposites and their use in coating processed cheese. RSC Adv 10(62):37857–37870

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Nair MS, Saxena A, Kaur CJ (2018) Effect of chitosan and alginate based coatings enriched with pomegranate peel extract to extend the postharvest quality of guava (Psidium guajava L.). Food Chem 240:245–252

    Article  CAS  PubMed  Google Scholar 

  8. García J et al (2017) Interpenetrating polymer networks hydrogels of chitosan and poly (2-hydroxyethyl methacrylate) for controlled release of quetiapine. React Funct Polym 117:52–59

    Article  CAS  Google Scholar 

  9. López O, García MA, Zaritzky NE (2010) Novel sources of edible films and coatings. Stewart Postharvest Rev 6(3):1–8

    Article  Google Scholar 

  10. Ali A et al (2011) Effect of chitosan coatings on the physicochemical characteristics of Eksotika II papaya (Carica papaya L.) fruit during cold storage. Food Chem 124(2):620–626

    Article  CAS  Google Scholar 

  11. Chen C et al (2016) Ficus hirta fruits extract incorporated into an alginate-based edible coating for Nanfeng mandarin preservation. Sci Hortic 202:41–48

    Article  CAS  Google Scholar 

  12. Youssef AM, Abdel-Aziz MS, El-Sayed SM (2014) Chitosan nanocomposite films based on Ag-NP and Au-NP biosynthesis by Bacillus subtilis as packaging materials. Int J Biol Macromol 69:185–191

    Article  CAS  PubMed  Google Scholar 

  13. Youssef AM et al (2018) Novel bionanocomposite materials used for packaging skimmed milk acid coagulated cheese (Karish). Int J Biol Macromol 115:1002–1011

    Article  CAS  PubMed  Google Scholar 

  14. El-Nahrawy AM et al (2016) Influences of Ag-NPs doping chitosan/calcium silicate nanocomposites for optical and antibacterial activity. Int J Biol Macromol 93:267–275

    Article  CAS  PubMed  Google Scholar 

  15. Abd El-Aziz M et al (2019) Preparation and characterization of chitosan/polyacrylic acid/copper nanocomposites and their impact on onion production. Int J Biol Macromol 123:856–865

    Article  CAS  PubMed  Google Scholar 

  16. Luo Y, Wang Q (2013) Recent advances of chitosan and its derivatives for novel applications in food science. J Food Process Beverages 1(1):1–13

    Google Scholar 

  17. Mustafa MA, Ali A, Manickam S, Siddiqui Y (2014) Ultrasound-assisted chitosan–surfactant nanostructure assemblies: towards maintaining postharvest quality of tomatoes. Food Bioprocess Technol 7(7):2102–2111

    Article  CAS  Google Scholar 

  18. Pilon L et al (2015) Chitosan nanoparticle coatings reduce microbial growth on fresh-cut apples while not affecting quality attributes. Int J Food Sci Technol 50(2):440–448

    Article  CAS  Google Scholar 

  19. Sultan M et al (2021) Smart edible coating films based on chitosan and beeswax–pollen grains for the postharvest preservation of Le Conte pear. RSC ADV 11(16):9572–9585

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. El-Sayed SM et al (2020) Rational design of chitosan/guar gum/zinc oxide bionanocomposites based on Roselle calyx extract for Ras cheese coating. Carbohydr Polym 239:116234

    Article  CAS  PubMed  Google Scholar 

  21. El-Sayed HS et al (2021) Development of eco-friendly probiotic edible coatings based on chitosan, alginate and carboxymethyl cellulose for improving the shelf life of UF soft cheese. J Polym Environ 29(6):1941–1953

    Article  CAS  Google Scholar 

  22. Kim YJ, Yoon KJ, Ko SW (2000) Preparation and properties of alginate superabsorbent filament fibers crosslinked with glutaraldehyde. J Appl Polym Sci 78(10):1797–1804

    Article  CAS  Google Scholar 

  23. Yu X et al (2008) Coating with sodium alginate and its effects on the functional properties and structure of frozen pork. J Muscle Food 19(4):333–351

    Article  CAS  Google Scholar 

  24. Xie Y et al (2011) Antibacterial activity and mechanism of action of zinc oxide nanoparticles against Campylobacter jejuni. Appl Environ Microbiol 77(7):2325–2331

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Al-Tayyar NA, Youssef AM, Al-Hindi RR (2020) Antimicrobial packaging efficiency of ZnO–SiO2 nanocomposites infused into PVA/CS film for enhancing the shelf life of food products. Food Packag Shelf Life 25:100523

    Article  Google Scholar 

  26. Lepot N et al (2011) Influence of incorporation of ZnO nanoparticles and biaxial orientation on mechanical and oxygen barrier properties of polypropylene films for food packaging applications. J Appl Polym Sci 120(3):1616–1623

    Article  CAS  Google Scholar 

  27. Dulta K et al (2021) Biogenic production and characterization of CuO nanoparticles by Carica papaya leaves and its biocompatibility applications. J Inorganic Organometallic Polym Mater 31(4):1846–1857

    Article  CAS  Google Scholar 

  28. Li X, Li W, Jiang Y, Ding Y, Yun J, Tang Y, Zhang P (2011) Effect of nano-ZnO-coated active packaging on quality of fresh-cut ‘Fuji’apple. Int J Food Sci Technol 46(9):1947–1955

    Article  CAS  Google Scholar 

  29. Ansorena MR et al (2011) Impact of edible coatings and mild heat shocks on quality of minimally processed broccoli (Brassica oleracea L.) during refrigerated storage. Postharvest Biol Technol 59(1):53–63

    Article  CAS  Google Scholar 

  30. Dulta K et al (2021) Ecofriendly synthesis of zinc oxide nanoparticles by Carica papaya leaf extract and their applications. J Clust Sci 33:1–15

    Google Scholar 

  31. Balashanmugam P et al (2013) Biosynthesis of silver nanoparticles from orange peel extract and its antibacterial activity against fruit and vegetable pathogens. Int J Innov Res Sci Eng 1(2):6

    Google Scholar 

  32. Marpudi SL et al (2013) Aloe vera gel coating for post harvest quality maintenance of fresh fig fruits. Res J Pharm Biol Chem Sci 4(1):878–887

    CAS  Google Scholar 

  33. Hazali N et al (2013) Physicochemical characteristics of belimbing dayak (Baccaurea angulata) juice beverages. Eur Int J Sci Technol 2:203–210

    Google Scholar 

  34. Siddiq M et al (2011) Characterization of new tart cherry (Prunus cerasus L.): selections based on fruit quality, total anthocyanins, and antioxidant capacity. Int J Food Prop 14(2):471–480

    Article  CAS  Google Scholar 

  35. Horwitz W, Latimer GJV (2005) AOAC Official methods of analysis of AOAC International. AOAC Int 2:17

    Google Scholar 

  36. Maftoonazad N, Ramaswamy HS (2005) Postharvest shelf-life extension of avocados using methyl cellulose-based coating. LWT-Food Sci Technol 38(6):617–624

    Article  CAS  Google Scholar 

  37. Gol NB et al (2013) Improvement of quality and shelf-life of strawberries with edible coatings enriched with chitosan. Postharvest Biol Technol 85:185–195

    Article  CAS  Google Scholar 

  38. Sánchez-Mata MC et al (2000) Comparison of high-performance liquid chromatography and spectrofluorimetry for vitamin C analysis of green beans (Phaseolus vulgaris L.). Eur Food Res Technol 210(3):220–225

    Article  Google Scholar 

  39. Barros L et al (2007) Total phenols, ascorbic acid, β-carotene and lycopene in Portuguese wild edible mushrooms and their antioxidant activities. Food Chem 103(2):413–419

    Article  CAS  Google Scholar 

  40. Terefe NS et al (2009) Combined high pressure-mild temperature processing for optimal retention of physical and nutritional quality of strawberries (Fragaria× ananassa). Innov Food Sci Emerg Technol 10(3):297–307

    Article  CAS  Google Scholar 

  41. Harrigan WF (1998) Laboratory methods in food microbiology. Gulf Professional Publishing, Oxford

    Google Scholar 

  42. Meena M et al (2020) Cu-chitosan nano-net improves keeping quality of tomato by modulating physio-biochemical responses. Sci Rep 10(1):1–11

    Article  CAS  Google Scholar 

  43. Ishkeh SR et al (2021) Effect of chitosan nanoemulsion on enhancing the phytochemical contents, health-promoting components, and shelf life of raspberry (Rubus sanctus Schreber). Appl Sci 11(5):2224

    Article  CAS  Google Scholar 

  44. Hernández-Muñoz P et al (2008) Effect of chitosan coating combined with postharvest calcium treatment on strawberry (Fragaria× ananassa) quality during refrigerated storage. Food Chem 110(2):428–435

    Article  PubMed  CAS  Google Scholar 

  45. Aşik E, Candoğan K (2014) Effects of chitosan coatings incorporated with garlic oil on quality characteristics of shrimp. J Food Qual 37(4):237–246

    Article  CAS  Google Scholar 

  46. Kim I-H et al (2014) Grape berry coatings of lemongrass oil-incorporating nanoemulsion. Food Sci Technol 58(1):1–10

    CAS  Google Scholar 

  47. Vargas M et al (2006) Quality of cold-stored strawberries as affected by chitosan–oleic acid edible coatings. Postharvest Biol Technol 41(2):164–171

    Article  CAS  Google Scholar 

  48. Wang X, Du Y, Liu HJ (2004) Preparation, characterization and antimicrobial activity of chitosan–Zn complex. Carbohydr Polym 56(1):21–26

    Article  CAS  Google Scholar 

  49. Hong K et al (2012) Effects of chitosan coating on postharvest life and quality of guava (Psidium guajava L.) fruit during cold storage. Sci Hortic 144:172–178

    Article  CAS  Google Scholar 

  50. Li W et al (2017) Enhanced visible light photocatalytic activity of ZnO nanowires doped with Mn2+ and Co2+ ions. Nanomaterials 7(1):20

    Article  PubMed Central  CAS  Google Scholar 

  51. Chen Z, Zhu C (2011) Combined effects of aqueous chlorine dioxide and ultrasonic treatments on postharvest storage quality of plum fruit (Prunus salicina L.). Postharvest Biol Technol 61(2–3):117–123

    Article  CAS  Google Scholar 

  52. Shamloo M, Sharifani M, Garmakhany AD, Seifi E (2013) Alternation of flavonoid compounds in Valencia Orange fruit (Citrus sinensis) peel as a function of storage period and edible covers. Minerva Biotecnologica 25(3):191–197

    Google Scholar 

  53. Hu Q, Fang Y, Yang Y, Ma N, Zhao L (2011) Effect of nanocomposite-based packaging on postharvest quality of ethylene-treated kiwifruit (Actinidia deliciosa) during cold storage. Food Res Int 44(6):1589–1596

    Article  CAS  Google Scholar 

  54. Ilić ZS, Trajković R, Perzelan Y, Alkalai-Tuvia S, Fallik E (2012) Influence of 1-methylcyclopropene (1-MCP) on postharvest storage quality in green bell pepper fruit. Food Bioprocess Technol 5(7):2758–2767

    Article  CAS  Google Scholar 

  55. Khaliq G, Mohamed MTM, Ali A, Ding P, Ghazali HM (2015) Effect of gum Arabic coating combined with calcium chloride on physico-chemical and qualitative properties of mango (Mangifera indica L.) fruit during low temperature storage. Sci Hortic 190:187–194

    Article  CAS  Google Scholar 

  56. Rokaya PR et al (2016) Effect of postharvest treatments on quality and shelf Life of mandarin (Citrus reticulata Blanco). Am J Plant Sci 7(07):1098

    Article  CAS  Google Scholar 

  57. Beckles DM (2012) Factors affecting the postharvest soluble solids and sugar content of tomato (Solanum lycopersicum L.) fruit. Postharvest Biol Technol 63(1):129–140

    Article  CAS  Google Scholar 

  58. Lin L, Wang B, Wang M, Cao J, Zhang J, Wu Y, Jiang W (2008) Effects of a chitosan-based coating with ascorbic acid on post-harvest quality and core browning of ‘Yali’pears (Pyrus bertschneideri Rehd.). J Sci Food Agric 88(5):877–884

    Article  CAS  Google Scholar 

  59. Kou XH, Wang S, Zhang Y, Guo RZ, Wu MS, Chen Q, Xue ZH (2014) Effects of chitosan and calcium chloride treatments on malic acid-metabolizing enzymes and the related gene expression in post-harvest pear cv. ‘Huang guan.’ Sci Hortic 165:252–259

    Article  CAS  Google Scholar 

  60. Tsegay D, Tesfaye B, Mohammed A, Yirga H (2013) Effects of harvesting stage and storage duration on postharvest quality and shelf life of sweet bell pepper (Capsicum annuum L.) varieties under passive refrigeration system. Int J Biotechnol Mol Biol Res 4(7):98–104

    Google Scholar 

  61. Petriccione M et al (2015) Effect of chitosan coating on the postharvest quality and antioxidant enzyme system response of strawberry fruit during cold storage. Foods 4(4):501–523

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Sheng L, Shen D, Luo Y, Sun X, Wang J, Luo T, Zeng Y, Xu J, Deng X, Cheng Y (2017) Exogenous γ-aminobutyric acid treatment affects citrate and amino acid accumulation to improve fruit quality and storage performance of postharvest citrus fruit. Food Chem 216:138–145

    Article  CAS  PubMed  Google Scholar 

  63. Guillén F, Díaz-Mula HM, Zapata PJ, Valero D, Serrano M, Castillo S, Martínez-Romero D (2013) Aloe arborescens and Aloe vera gels as coatings in delaying postharvest ripening in peach and plum fruit. Postharvest Biol Technol 83:54–57

    Article  CAS  Google Scholar 

  64. Shah SWA et al (2015) Storage stability of kinnow fruit (Citrus reticulata) as affected by CMC and guar gum-based silver nanoparticle coatings. Molecules 20(12):22645–22661

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Chen C-Y et al (2016) Effect of carboxymethyl cellulose coating enriched with clove oil on postharvest quality of ‘Xinyu’mandarin oranges. Fruits 71(5):319–327

    Article  CAS  Google Scholar 

  66. Wang SY, Gao H (2013) Effect of chitosan-based edible coating on antioxidants, antioxidant enzyme system, and postharvest fruit quality of strawberries (Fragaria x aranassa Duch). LWT-Food Sci Technol 52(2):71–79

    Article  CAS  Google Scholar 

  67. Dulta K et al (2022) Multifunctional CuO nanoparticles with enhanced photocatalytic dye degradation and antibacterial activity. Sustain Environ Res 32(1):1–15

    Article  CAS  Google Scholar 

  68. Nunes MCN, Brecht JK, Morais AMMB, Sargent SA (1998) Controlling temperature and water loss to maintain ascorbic acid levels in strawberries during postharvest handling. J Food Sci 63(6):1033–1036

    Article  CAS  Google Scholar 

  69. Emamifar A, Mohammadizadeh M (2015) Preparation and application of LDPE/ZnO nanocomposites for extending shelf life of fresh strawberries. Food Technol Biotechnol 53(4):488–495

    CAS  PubMed  PubMed Central  Google Scholar 

  70. Baldwin EJ (2005) Edible coatings. pp 301–314

  71. Meng X, Li B, Liu J, Tian S (2008) Physiological responses and quality attributes of table grape fruit to chitosan preharvest spray and postharvest coating during storage. Food Chem 106(2):501–508

    Article  CAS  Google Scholar 

  72. Reddy MB, Belkacemi K, Corcuff R, Castaigne F, Arul J (2000) Effect of pre-harvest chitosan sprays on post-harvest infection by Botrytis cinerea and quality of strawberry fruit. Postharvest Biol Technol 20(1):39–51

    Article  Google Scholar 

  73. Chisari M, Barbagallo RN, Spagna G (2007) Characterization of polyphenol oxidase and peroxidase and influence on browning of cold stored strawberry fruit. J Agric Food Chem 55(9):3469–3476

    Article  CAS  PubMed  Google Scholar 

  74. Li X, Tu H, Huang M, Chen J, Shi X, Deng H, Du Y (2017) Incorporation of lysozyme-rectorite composites into chitosan films for antibacterial properties enhancement. Int J Biol Macromol 102:789–795

    Article  CAS  PubMed  Google Scholar 

  75. Chen W, Jin TZ, Gurtler JB, Geveke DJ, Fan X (2012) Inactivation of Salmonella on whole cantaloupe by application of an antimicrobial coating containing chitosan and allyl isothiocyanate. Int J Food Microbiol 155(3):165–170

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

Authors are highly thankful to the School of Bioengineering and Food Technology, Shoolini University, Solan, India.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. K. Chauhan.

Ethics declarations

Conflict of interest

All authors declare that there is no conflict of interest.

Ethical Approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dulta, K., Koşarsoy Ağçeli, G., Thakur, A. et al. Development of Alginate-Chitosan Based Coating Enriched with ZnO Nanoparticles for Increasing the Shelf Life of Orange Fruits (Citrus sinensis L.). J Polym Environ 30, 3293–3306 (2022). https://doi.org/10.1007/s10924-022-02411-7

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10924-022-02411-7

Keywords

Navigation