Skip to main content
Log in

The Float-Sink Behavior of Selected Pre-microwave Irradiated Plastics by Surface Adsorption of Several Dual Depressants

  • Original Paper
  • Published:
Journal of Polymers and the Environment Aims and scope Submit manuscript

Abstract

The influential separation of an individual plastic from a mixture of waste plastics is a crucial factor for the quality evaluation of the recycled product. The selected engineering plastics available in municipal and industrial wastes including, acrylonitrile butadiene styrene, polycarbonate, and poly oxy methylene microwave irradiated for different microwave powers. The irradiated plastics conditioned with the selected dual depressants with different concentrations and after that, they introduced into the flotation tank with tap water as liquid media. The effects of microwave power and depressant concentration on the hydrophilic-hydrophobic (sink-float) properties of the plastic surface evaluated. It revealed, the microwave irradiation changed the capacity (the adsorbed depressant mono or multilayer molecules), numbers, and concentration of the plastic surface active sites. It resulted in different sink-float properties of the studied plastics. It was beneficial for the flotation of some plastics and depressants. The results evidenced by different techniques including, contact angles (θ), ATR-FTIR spectra, and AFM and SEM images. The driven equations by a design of experiment software (Design-Expert \(\circledR\)) showed suitable conformity between the predicted and actual plastic flotation values.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Data Availability

The datasets generated during and/or analysed during the current study are available from the corresponding author on reasonable request.

References

  1. Wang CQ, Wang H, Fu JG, Liu YN (2015) Flotation separation of waste plastics for recycling: a review. Waste Manag 41:28–38

    Article  CAS  PubMed  Google Scholar 

  2. Al-Salem SM, Lettieri P, Baeyens J (2009) Recycling and recovery routes of plastic solid waste (PSW): a review. Waste Manag 29:2625–2643

    Article  CAS  PubMed  Google Scholar 

  3. Gu F, Guo J, Zhang W, Summers PA, Hall P (2017) From waste plastics to industrial raw materials: a life cycle assessment of mechanical plastic recycling practice based on a real-world case study. Sci Total Environ 601–602:1192–1207

    Article  PubMed  CAS  Google Scholar 

  4. Hopewell J, Dvorak R, Kosior E (2009) Plastics recycling: challenges and opportunities. Philos Trans R Soc B: Biolog Sci 364:2115–2126

    Article  CAS  Google Scholar 

  5. Li J, Wu G, Xu Z (2015) Tribo-charging properties of waste plastic granules in process of tribo-electrostatic separation. Waste Manag 35:36–41

    Article  PubMed  CAS  Google Scholar 

  6. Wu G, Li J, Xu Z (2013) Triboelectrostatic separation for granular plastic waste recycling: a review. Waste Manag 33:585–597

    Article  PubMed  Google Scholar 

  7. Silveira AVM, Cella M, Tanabe EH, Bertuol DA (2018) Application of triboelectrostatic separation in the recycling of plastic wastes. Process Saf Environ 114:219–228

    Article  CAS  Google Scholar 

  8. Pappa G, Boukouvalas C, Giannaris C, Ntaras N, Zografos V, Magoulas K, Tassios D (2001) The selective dissolution/precipitation technique for polymer recycling: a pilot unit application. Resour Conserv Recycl 34:33–44

    Article  Google Scholar 

  9. Weeden GS, Soepriatna NH, Wang NL (2015) Method for efficient recovery of high-purity polycarbonates from electronic waste. Environ Sci Technol 49:2425–2433

    Article  CAS  PubMed  Google Scholar 

  10. Zhao Y, Lv X, Yang W, Ni H (2017) Laboratory simulations of the mixed solvent extraction recovery of dominate polymers in electronic waste. Waste Manag 69:393–399

    Article  CAS  PubMed  Google Scholar 

  11. Malcolm Richard G, Mario M, Javier T, Susana T (2011) Optimization of the recovery of plastics for recycling by density media separation cyclones. Resour Conserv Recycl 55:472–482

    Article  Google Scholar 

  12. Lee JJS, Mo JPT, Wu DY (2012) Polymer recovery from auto shredder residue by projectile separation method. Sustain-Basel 4:643–655

    Article  Google Scholar 

  13. Gent R, Menendez MM, Toraño J, Torno S (2011) Optimization of the recovery of plastics for recycling by density media separation cyclones. Resour Conserv Recycl 55:472–482

    Article  Google Scholar 

  14. Gent M (2009) Recycling of plastic waste by density separation: prospects for optimization. Waste Manag Res 27:175–187

    Article  PubMed  Google Scholar 

  15. Fraunholcz N (2004) Separation of waste plastics by froth flotation-a review, part I. Miner Eng 17:261–268

    Article  CAS  Google Scholar 

  16. Alter H (2005) The recovery of plastics from waste with reference to froth flotation. Resour Conserv Recycl 43:119–132

    Article  Google Scholar 

  17. Shen H, Forssberg E, Pugh R (2001) Selective flotation separation of plastics by particle control. Resour Conserv Recycl 33:37–50

    Article  Google Scholar 

  18. Negari MS, Movahed SO, Ahmadpour A (2018) Separation of polyvinylchloride (PVC), polystyrene (PS) and polyethylene terephthalate (PET) granules using various chemical agents by flotation technique. Sep Purif Technol 194:368–376

    Article  CAS  Google Scholar 

  19. Davari MR, Movahed SO (2019) The flotation by selected depressants as an efficient technique for separation of a mixed acrylonitrile butadiene styrene, polycarbonate and polyoxymethyleneplastics in waste streams. J Polym Environ 27:1709–1720

    Article  CAS  Google Scholar 

  20. Burat F, Güney A, Kangal MO (2009) Selective separation of virgin and postconsumer polymers (PET and PVC) by flotation method. Waste Manag 29:1807–1813

    Article  CAS  PubMed  Google Scholar 

  21. Takoungsakdakun T, Pongstabodee S (2007) Separation of mixed post-consumer PET–POM–PVC plastic waste using selective flotation. Sep Purif Technol 54:248–252

    Article  CAS  Google Scholar 

  22. Kangal MO (2010) Selective flotation technique for separation of PET and HDPE used in drinking water bottles. Miner Process Extr Metall Rev 31:214–223

    Article  CAS  Google Scholar 

  23. Basařová P, Bartovská L, Kořínek K, Horn D (2005) The influence of flotation agent concentration on the wettability and flotability of polystyrene. J Colloid Interface Sci 286:333–338

    Article  PubMed  CAS  Google Scholar 

  24. Yuce AE, Kilic M (2015) separation of PVC/PET mixture from plastic wastes using column flotation technique. J Environ Prot Ecol 16:705–715

    CAS  Google Scholar 

  25. Guo J, Li X, Guo Y, Ruan J, Qiao Q, Zhang J, Bi Y, Li F (2016) Research on flotation technique of separating pet from plastic packaging wastes. Procedia Environ Sci 31:178–184

    Article  CAS  Google Scholar 

  26. Yenial U, Burat F (2013) Separation of PET and PVC by flotation technique without using alkaline treatment. Miner Process Extr Metall Rev 34:412–421

    Article  CAS  Google Scholar 

  27. Pascoe RD (2005) The use of selective depressants for the separation of ABS and 65 HIPS by froth flotation. Miner Eng 18:233–237

    Article  CAS  Google Scholar 

  28. Güney A, Özdilek C, Kangal MO, Burat F (2015) Flotation characterization of PET and PVC in the presence of different plasticizers. Sep Purif Technol 151:47–56

    Article  CAS  Google Scholar 

  29. Motasemi F, Afzal MT (2013) A review on the microwave-assisted pyrolysis technique. Renew Sustain Energy Rev 28:317–330

    Article  CAS  Google Scholar 

  30. Molanorouzi M, Mohaved SO (2016) Reclaiming waste tire rubber by an irradiation technique. Polym Degrad Stab 128:115–125

    Article  CAS  Google Scholar 

  31. Khavarnia M, Movahed SO (2016) Butyl rubber reclamation by combined microwave radiation and chemical reagents. J Appl Polym Sci 133:43363–43373

    Article  CAS  Google Scholar 

  32. Movahed SO, Ansarifar A, Zohuri G, Ghaneie N, Kermany Y (2016) Devulcanization of ethylene–propylene–diene waste rubber by microwaves and chemical agents. J Elastom Plast 48:122–144

    Article  CAS  Google Scholar 

  33. Mallampati SR, Lee CH, Park MH, Lee BK (2018) Processinplastics from ASR/ESR waste: separation of poly vinyl chloride (PVC) by froth flotation aftemicrowave-assisted surface modification. J Mater Cycles Waste Manag 20:91–99

    Article  CAS  Google Scholar 

  34. Huang L, Wang H, Wang C, Zhao J, Zhang B (2017) Microwave-assisted surface modification for the separation of polycarbonate from poly methyl methacrylate and polyvinyl chloride waste plastics by flotation. Waste Manag Res 35:294–300

    Article  CAS  PubMed  Google Scholar 

  35. Mallampati SR, Lee CH, Park MH, Lee BK (2018) Processing plastics from ASR/ESR waste: separation of poly vinyl chloride (PVC) by froth flotation after microwave-assisted surface modification. J Mater Cycles Waste Manag 20:91–99

    Article  CAS  Google Scholar 

  36. Truc NT, Lee BK (2017) Combining ZnO/microwave treatment for changing wettability of WEEE styrene plastics (ABS and HIPS) and their selective separation by froth flotation. Appl Surf Sci 420:746–752

    Article  CAS  Google Scholar 

  37. Irannajad M, Mehdilo A, Nuri OS (2014) Influence of microwave irradiation on ilmenite flotation behavior in the presence of different gangue minerals. Sep Purif Technol 132:401–412

    Article  CAS  Google Scholar 

  38. Cheng G, Li Z, Cao Y, Jiang Z (2020) Research progress in lignite flotation intensification. Int J Coal Prep Util 40:59–76

    Article  CAS  Google Scholar 

  39. Shen H, Forssberg E, Pugh RJ (2002) Selective flotation separation of plastics by chemical conditioning with methyl cellulose. Resour Conserv Recycl 35:229–241

    Article  Google Scholar 

  40. Aumann T, Theirich D, Engemann J (2001) Rapid surface modification of polyethylene in microwave and r.f.-plasmas: comparative study. Surf Coat Technol 142–144:169

    Article  Google Scholar 

  41. Zhao Q, Gu X, Zhang S, Dong M, Jiang P, Hu Z (2014) Surface modification of polyamide 66 fabric by microwave induced grafting with 2-hydroxyethyl methacrylate. Surf Coat Technol 240:197–203

    Article  CAS  Google Scholar 

  42. Saleh NS, Movahed SO, Attarbashi F (2018) Study on the anti-biofouling effects of the grafted polyamide 6 fibers by several vinyl chemicals. J Appl Polym Sci 135:46760–46770

    Article  CAS  Google Scholar 

  43. Ginn BT, Steinbock O (2003) Polymer surface modification using microwave-oven-generated plasma. Langmuir 19:8117–8118

    Article  CAS  Google Scholar 

  44. Kirwan LJ, van Fawell PD, Bronswijk W (2003) In situ FTIR-ATR examination of poly (acrylic acid) adsorbed onto hematite at low pH. Langmuir 19(14):5802–5807

    Article  CAS  Google Scholar 

  45. Masel IR (1996) Principles of adsorption and reaction on solid surfaces. Wiley, New York

    Google Scholar 

  46. Zhao Y, Yang S, Wen H, Shen Z, Han F (2019) Adsorption behavior and selectivity mechanism of flotation reagents applied in ternary plastic mixtures. Waste Manag 87:565–576

    Article  CAS  PubMed  Google Scholar 

  47. Gregg GC, Sing KSW (1982) Adsorption, surface area and porosity, 2nd edn. Academic, London

    Google Scholar 

  48. Jiang H, Zhang Y, Wang H (2020) Surface reactions in selective modification: the prerequisite for plastic flotation. Environ Sci Technol 54:9742–9756

    Article  CAS  PubMed  Google Scholar 

  49. Zhang Y, Jiang H, Wang H, Wang C (2020) Separation of hazardous polyvinyl chloride from waste plastics by flotation assisted with surface modification of ammonium per sulfate: process and mechanism. J Hazard Mater 389:121918

    Article  CAS  PubMed  Google Scholar 

  50. Stat-Ease Handbook for Experimenters, Copyright ©2018 Stat-Ease, Inc. 2021 East Hennepin Ave, Suite 480 Minneapolis, MN 55413

Download references

Acknowledgements

The authors sincerely thank the staffs of the polymer chemistry laboratory located at faculty of science, Ferdowsi University of Mashhad for their sincere cooperation. Approval no. 3/53616.

Funding

The authors have not disclosed any funding.

Author information

Authors and Affiliations

Authors

Contributions

HH, SOM, and SJ designed the experiments. Dr. SOM prepared the manuscript with contributions from all co-authors. The authors applied the SDC approach for the sequence of authors.

Corresponding author

Correspondence to Saeed Ostad Movahed.

Ethics declarations

Conflict of interest

The authors have not disclosed any competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hoseini, H., Ostad Movahed, S. & Jourabchi, S. The Float-Sink Behavior of Selected Pre-microwave Irradiated Plastics by Surface Adsorption of Several Dual Depressants. J Polym Environ 30, 2824–2836 (2022). https://doi.org/10.1007/s10924-022-02394-5

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10924-022-02394-5

Keywords

Navigation