Skip to main content
Log in

Development of Insoluble PVA Electrospun Nanofibers Incorporating R-Limonene or β-Cyclodextrin/R-Limonene Inclusion Complexes

  • Original Paper
  • Published:
Journal of Polymers and the Environment Aims and scope Submit manuscript

Abstract

Electrospinning of water-soluble polymers is considered a green process for encapsulating active compounds in polymeric nanofibers, but generally the obtained materials remain water-soluble so applications are limited. In this paper, water-insoluble poly(vinyl alcohol) (PVA) nanofibers incorporating R-limonene (a highly volatile antimicrobial) were developed. In order to avoid R-limonene loses during fabrication, β-cyclodextrin was added to the formulation. A proper heat treatment of the materials led to water-insolubilization by means of citric acid crosslinking. Nanofibers diameters were increased by the presence of β-cyclodextrin/R-limonene as a consequence of new crystalline structure. Also, encapsulation efficiency of R-limonene was improved from (19 ± 1)% to (70 ± 1)% when β-cyclodextrin was present in the formulation. Antimicrobial activity resulted low; even so, nanofibers incorporating R-limonene inhibited Escherichia coli growth. Biodegradation rate of PVA nanofibers decreased significantly when incorporating R-limonene, but it was unaffected when the active principle was also encapsulated in β-cyclodextrin. The results of this research showed that an additional encapsulation of volatile compounds with cyclodextrins could be useful to improve encapsulation efficiency in heat-treatment crosslinked materials while maintaining both the antimicrobial activity and biodegradable character of the material.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Shemesh R, Krepker M, Nitzan N et al (2016) Active packaging containing encapsulated carvacrol for control of postharvest decay. Postharvest Biol Technol 118:175–182. https://doi.org/10.1016/j.postharvbio.2016.04.009

    Article  CAS  Google Scholar 

  2. Uyar T, Hacaloglu J, Besenbacher F (2009) Electrospun polystyrene fibers containing high temperature stable volatile fragrance/flavor facilitated by cyclodextrin inclusion complexes. React Funct Polym 69:145–150. https://doi.org/10.1016/j.reactfunctpolym.2008.12.012

    Article  CAS  Google Scholar 

  3. Dorman HJD, Deans SG (2000) Antimicrobial agents from plants: antibacterial activity of plant volatile oils. J Appl Microbiol 88:308–316

    Article  CAS  Google Scholar 

  4. Burt S (2004) Essential oils: their antibacterial properties and potential applications in foods—a review. Int J Food Microbiol 94:223–253. https://doi.org/10.1016/j.ijfoodmicro.2004.03.022

    Article  CAS  PubMed  Google Scholar 

  5. US Food and Drug Administration (2003) FDA cite: 21CFR176

  6. US Food and Drug Administration (2017) FDA cite: 21CFR582.20

  7. Ribba L, Parisi M, D’accorso NB, Goyanes S (2014) Electrospun nanofibrous mats: from vascular repair to osteointegration. J Biomed Nanotechnol 10:3508–3535. https://doi.org/10.1166/jbn.2014.2046

    Article  CAS  PubMed  Google Scholar 

  8. López-Córdoba A, Maria Lagarón J, Goyanes S (2016) Fabrication of electrospun and electrosprayed carriers for the delivery of bioactive food ingredients. Elsevier, Amsterdam. https://doi.org/10.1016/B978-0-08-100596-5.03088-2

    Book  Google Scholar 

  9. López-Córdoba A, Castro GR, Goyanes S (2016) A simple green route to obtain poly(vinyl alcohol) electrospun mats with improved water stability for use as potential carriers of drugs. Mater Sci Eng C 69:726–732. https://doi.org/10.1016/j.msec.2016.07.058

    Article  CAS  Google Scholar 

  10. Echegoyen Y, Fabra MJ, Castro-Mayorga JL et al (2017) High throughput electro-hydrodynamic processing in food encapsulation and food packaging applications. Trends Food Sci Technol 60:71–79. https://doi.org/10.1016/j.tifs.2016.10.019

    Article  CAS  Google Scholar 

  11. Kayaci F, Uyar T (2012) Encapsulation of vanillin/cyclodextrin inclusion complex in electrospun polyvinyl alcohol (PVA) nanowebs: prolonged shelf-life and high temperature stability of vanillin. Food Chem 133:641–649. https://doi.org/10.1016/j.foodchem.2012.01.040

    Article  CAS  Google Scholar 

  12. Wen P, Zhu D-H, Wu H et al (2016) Encapsulation of cinnamon essential oil in electrospun nanofibrous film for active food packaging. Food Control 59:366–376. https://doi.org/10.1016/j.foodcont.2015.06.005

    Article  CAS  Google Scholar 

  13. Munhuweyi K, Caleb OJ, van Reenen AJ, Opara UL (2018) Physical and antifungal properties of β-cyclodextrin microcapsules and nanofibre films containing cinnamon and oregano essential oils. LWT-Food Sci Technol 87:413–422. https://doi.org/10.1016/j.lwt.2017.09.012

    Article  CAS  Google Scholar 

  14. Li W, Liu C, Deng J et al (2017) Research on properties of polyvinyl alcohol antifungal film based on clove essential oil nano-microcapsule. J Comput Theor Nanosci 14:2981–2985. https://doi.org/10.1166/jctn.2017.6451

    Article  CAS  Google Scholar 

  15. Saenger W, Jacob J, Gessler K et al (1998) Structures of the common cyclodextrins and their larger analogues beyond the doughnut. Chem Rev 98:1787–1802. https://doi.org/10.1021/cr9700181

    Article  CAS  PubMed  Google Scholar 

  16. Astray G, Gonzalez-Barreiro C, Mejuto JC et al (2009) A review on the use of cyclodextrins in foods. Food Hydrocoll 23:1631–1640. https://doi.org/10.1016/j.foodhyd.2009.01.001

    Article  CAS  Google Scholar 

  17. Muñoz-Shugulí C, Vidal CP, Cantero-López P, Lopez-Polo J (2021) Encapsulation of plant extract compounds using cyclodextrin inclusion complexes, liposomes, electrospinning and their combinations for food purposes. Trends Food Sci Technol 108:177–186. https://doi.org/10.1016/j.tifs.2020.12.020

    Article  CAS  Google Scholar 

  18. Coelho SC, Estevinho BN, Rocha F (2021) Encapsulation in food industry with emerging electrohydrodynamic techniques: electrospinning and electrospraying–a review. Food Chem 339:127850. https://doi.org/10.1016/j.foodchem.2020.127850

    Article  CAS  Google Scholar 

  19. Estevez-Areco S, Guz L, Candal R, Goyanes S (2018) Release kinetics of rosemary (Rosmarinus officinalis) polyphenols from polyvinyl alcohol (PVA) electrospun nanofibers in several food simulants. Food Packag Shelf Life. https://doi.org/10.1016/j.fpsl.2018.08.006

    Article  Google Scholar 

  20. Yu D, Feng Y, Xu J et al (2021) Fabrication, characterization, and antibacterial properties of citric acid crosslinked PVA electrospun microfibre mats for active food packaging. Packag Technol Sci 34:361–370. https://doi.org/10.1002/pts.2566

    Article  CAS  Google Scholar 

  21. Aytac Z, Celebioglu A, Yildiz ZI, Uyar T (2018) Efficient encapsulation of citral in fast-dissolving polymer-free electrospun nanofibers of cyclodextrin inclusion complexes: high thermal stability, longer shelf-life, and enhanced water solubility of citral. Nanomaterials 8:793. https://doi.org/10.3390/nano8100793

    Article  CAS  PubMed Central  Google Scholar 

  22. Celebioglu A, Yildiz ZI, Uyar T (2018) Electrospun nanofibers from cyclodextrin inclusion complexes with cineole and p-cymene: enhanced water solubility and thermal stability. Int J Food Sci Technol 53:112–120. https://doi.org/10.1111/ijfs.13564

    Article  CAS  Google Scholar 

  23. Aytac Z, Yildiz ZI, Kayaci-Senirmak F et al (2016) Electrospinning of polymer-free cyclodextrin/geraniol–inclusion complex nanofibers: enhanced shelf-life of geraniol with antibacterial and antioxidant properties. RSC Adv 6:46089–46099. https://doi.org/10.1039/C6RA07088D

    Article  CAS  Google Scholar 

  24. Aytac Z, Dogan SY, Tekinay T, Uyar T (2014) Release and antibacterial activity of allyl isothiocyanate/β-cyclodextrin complex encapsulated in electrospun nanofibers. Colloids Surf B Biointerfaces 120:125–131. https://doi.org/10.1016/j.colsurfb.2014.04.006

    Article  CAS  PubMed  Google Scholar 

  25. Mascheroni E, Fuenmayor CA, Cosio MS et al (2013) Encapsulation of volatiles in nanofibrous polysaccharide membranes for humidity-triggered release. Carbohydr Polym 98:17–25. https://doi.org/10.1016/j.carbpol.2013.04.068

    Article  CAS  PubMed  Google Scholar 

  26. DeMerlis CC, Schoneker DR (2003) Review of the oral toxicity of polyvinyl alcohol (PVA). Food Chem Toxicol 41:319–326. https://doi.org/10.1016/S0278-6915(02)00258-2

    Article  CAS  PubMed  Google Scholar 

  27. US Food and Drug Administration (2017) FDA cite: 21CFR176.170

  28. Kayaci F, Sen HS, Durgun E, Uyar T (2014) Functional electrospun polymeric nanofibers incorporating geraniol–cyclodextrin inclusion complexes: high thermal stability and enhanced durability of geraniol. Food Res Int 62:424–431. https://doi.org/10.1016/j.foodres.2014.03.033

    Article  CAS  Google Scholar 

  29. Rieger KA, Schiffman JD (2014) Electrospinning an essential oil: cinnamaldehyde enhances the antimicrobial efficacy of chitosan/poly (ethylene oxide) nanofibers. Carbohydr Polym 113:561–568. https://doi.org/10.1016/j.carbpol.2014.06.075

    Article  CAS  PubMed  Google Scholar 

  30. Liakos I, Rizzello L, Hajiali H et al (2015) Fibrous wound dressings encapsulating essential oils as natural antimicrobial agents. J Mater Chem B 3:1583–1589. https://doi.org/10.1039/C4TB01974A

    Article  CAS  PubMed  Google Scholar 

  31. Singh P, Shukla R, Prakash B et al (2010) Chemical profile, antifungal, antiaflatoxigenic and antioxidant activity of Citrus maxima Burm. and Citrus sinensis (L.) Osbeck essential oils and their cyclic monoterpene, DL-limonene. Food Chem Toxicol 48:1734–1740. https://doi.org/10.1016/j.fct.2010.04.001

    Article  CAS  PubMed  Google Scholar 

  32. Yuliani S, Torley PJ, D’Arcy B et al (2006) Extrusion of mixtures of starch and d-limonene encapsulated with β-cyclodextrin: flavour retention and physical properties. Food Res Int 39:318–331. https://doi.org/10.1016/j.foodres.2005.08.005

    Article  CAS  Google Scholar 

  33. Decock G, Landy D, Surpateanu G, Fourmentin S (2008) Study of the retention of aroma components by cyclodextrins by static headspace gas chromatography. J Incl Phenom Macrocycl Chem 62:297–302. https://doi.org/10.1007/s10847-008-9471-z

    Article  CAS  Google Scholar 

  34. Shin YM, Hohman MM, Brenner MP, Rutledge GC (2001) Experimental characterization of electrospinning: the electrically forced jet and instabilities. Polymer (Guildf) 42:9955–9967. https://doi.org/10.1016/S0032-3861(01)00540-7

    Article  CAS  Google Scholar 

  35. Ribba LG (2017) Nanoestructuras biodegradables obtenidas mediante técnicas de electroestirado (Doctoral thesis). University of Buenos Aires, Argentina. Retrieved from http://hdl.handle.net/20.500.12110/tesis_n6263_Ribba

  36. Cengiz F, Dao TA, Jirsak O (2010) Influence of solution properties on the roller electrospinning of poly(vinyl alcohol). Polym Eng Sci 50:936–943. https://doi.org/10.1002/pen.21599

    Article  CAS  Google Scholar 

  37. Camerlo A, Vebert-Nardin C, Rossi RM, Popa A-M (2013) Fragrance encapsulation in polymeric matrices by emulsion electrospinning. Eur Polym J 49:3806–3813. https://doi.org/10.1016/j.eurpolymj.2013.08.028

    Article  CAS  Google Scholar 

  38. Kayaci F, Ertas Y, Uyar T (2013) Enhanced thermal stability of eugenol by cyclodextrin inclusion complex encapsulated in electrospun polymeric nanofibers. J Agric Food Chem 61:8156–8165. https://doi.org/10.1021/jf402923c

    Article  CAS  PubMed  Google Scholar 

  39. Liu P, Chen W, Liu C et al (2019) A novel poly(vinyl alcohol)/poly (ethylene glycol) scaffold for tissue engineering with a unique bimodal open-celled structure fabricated using supercritical fluid foaming. Sci Rep 9:1–12. https://doi.org/10.1038/s41598-019-46061-7

    Article  CAS  Google Scholar 

  40. Ohsaku M, Hatamoto T, Murata H, Imamura A (1982) Stability of the crystal structures of poly(vinyl alcohol) (PVA) by CNDO/2 calculations. Polymer (Guildf) 23:776–778. https://doi.org/10.1016/0032-3861(82)90069-6

    Article  CAS  Google Scholar 

  41. Yoshii H, Furuta T, Asada M, Sugisawa H (1992) Quantitative analysis by X-ray diffraction of the inclusion complex formed by d-limonene in a β-cyclodextrin/maltodextrin mixed powder. Biosci Biotechnol Biochem 56:384–387. https://doi.org/10.1271/bbb.56.384

    Article  CAS  PubMed  Google Scholar 

  42. Papadopoulos ND, Karayianni HS, Tsakiridis PE et al (2010) Cyclodextrin inclusion complexes as novel MOCVD precursors for potential cobalt oxide deposition. Appl Organomet Chem 24:112–121. https://doi.org/10.1002/aoc.1588

    Article  CAS  Google Scholar 

  43. López-Córdoba A, Estevez-Areco S, Goyanes S (2019) Potato starch-based biocomposites with enhanced thermal, mechanical and barrier properties comprising water-resistant electrospun poly(vinyl alcohol) fibers and yerba mate extract. Carbohydr Polym 215:377–387. https://doi.org/10.1016/j.carbpol.2019.03.105

    Article  CAS  PubMed  Google Scholar 

  44. Holland BJ, Hay JN (2001) The thermal degradation of poly(vinyl alcohol). Polymer (Guildf) 42:6775–6783. https://doi.org/10.1016/S0032-3861(01)00166-5

    Article  CAS  Google Scholar 

  45. Aytac Z, Kusku SI, Durgun E, Uyar T (2016) Quercetin/β-cyclodextrin inclusion complex embedded nanofibres: slow release and high solubility. Food Chem 197:864–871. https://doi.org/10.1016/j.foodchem.2015.11.051

    Article  CAS  PubMed  Google Scholar 

  46. Aytac Z, Uyar T (2017) Core-shell nanofibers of curcumin/cyclodextrin inclusion complex and polylactic acid: enhanced water solubility and slow release of curcumin. Int J Pharm 518:177–184. https://doi.org/10.1016/j.ijpharm.2016.12.061

    Article  CAS  PubMed  Google Scholar 

  47. Massaldi HA, King CJ (1973) Simple technique to determine solubilities of sparingly soluble organics. Solubility and activity coefficients of d-limonene, butylbenzene, and n-hexyl acetate in water and sucrose solutions. J Chem Eng Data 18:393–397

    Article  CAS  Google Scholar 

  48. Pinho E, Magalhães L, Henriques M, Oliveira R (2011) Antimicrobial activity assessment of textiles: standard methods comparison. Ann Microbiol 61:493–498. https://doi.org/10.1007/s13213-010-0163-8

    Article  CAS  Google Scholar 

  49. Ceballos RL, von Bilderling C, Guz L et al (2021) Effect of greenly synthetized silver nanoparticles on the properties of active starch films obtained by extrusion and compression molding. Carbohydr Polym 261:117871. https://doi.org/10.1016/j.carbpol.2021.117871

    Article  CAS  PubMed  Google Scholar 

  50. Bar R, Ulitzur S (1994) Bacterial toxicity of cyclodextrins: luminuous Escherichia coli as a model. Appl Microbiol Biotechnol 41:574–577. https://doi.org/10.1007/BF00178492

    Article  CAS  PubMed  Google Scholar 

  51. Chubukov V, Mingardon F, Schackwitz W et al (2015) Acute limonene toxicity in Escherichia coli is caused by limonene hydroperoxide and alleviated by a point mutation in alkyl hydroperoxidase AhpC. Appl Environ Microbiol 81:4690–4696. https://doi.org/10.1128/AEM.01102-15

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Funding

This work was supported by the following organizations: CONICET (Grant Nos. PIP 2014–2016, 11220120100508CO), University of Buenos Aires (Grant Nos. UBACYT2014–2017, 20020130100495BA), ANPCyT (Grant Nos. PICT-2012-1093, PICT 2016-2940).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Roberto Candal or Silvia Goyanes.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 920.2 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Estevez-Areco, S., Guz, L., Candal, R. et al. Development of Insoluble PVA Electrospun Nanofibers Incorporating R-Limonene or β-Cyclodextrin/R-Limonene Inclusion Complexes. J Polym Environ 30, 2812–2823 (2022). https://doi.org/10.1007/s10924-022-02390-9

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10924-022-02390-9

Keywords

Navigation