Skip to main content
Log in

A Compatible Interface of Wheat Straw/Polylactic Acid Composites Collaborative Constructed Using KH570–Nano TiO2

  • Review
  • Published:
Journal of Polymers and the Environment Aims and scope Submit manuscript

Abstract

Poor interfacial compatibility between wheat straw and polylactic acid (PLA) remains a problem that directly affects the overall performance of wheat straw/PLA composites, thereby reducing the scope of application of these types of composites. To address this concern in this study, a silane coupling agent, KH570, and nano TiO2 were used to synergistically construct wheat straw/PLA composites with compatible interfaces. Scanning electron microscopy, transmission electron microscopy, Fourier transform infrared spectroscopy, thermogravimetric analysis, and differential scanning calorimetry were conducted to investigate the underlying mechanism of synergistic modification. Analysis of the mechanical and water resistance properties indicates that the agglomeration of nano TiO2 in the synergistically modified composites is reduced, leading to the improved interfacial compatibility of the composites, tightened two-phase combination, and weakened stress concentration. Consequently, the mechanical strength and water resistance of the composites are effectively enhanced. Compared with unmodified composites, the blending and tensile strength of the synergistically modified composites increased by 25.4% and 44.7%, respectively, and its 96 h water absorption rate decreased by 17.4%. Analysis of the thermal stability and crystalline structure showed that the crystallinity of the synergistically modified composites was significantly enhanced, and the thermal stability was improved. Analyses of the rheological properties showed that the storage modulus (G′) of the synergistically modified composites was significantly improved under strain sweep, indicating that the two phases of the synergistically modified composites possessed enhanced bonding strength and internal structural stability. Frequency scanning showed that the complex viscosity (η*) of the synergistically modified composites exhibited the greatest improvement, indicating that a compatible composite interface was constructed by synergistic modification; moreover, the strong physical crosslinking effect and the nano TiO2 interparticle interaction friction hindered the flow of the composites. In this paper, for the first time, a silane coupling agent, KH570, was used to construct wheat straw/PLA composites with a compatible interface utilizing nano TiO2 to enhance the overall properties of the composite, which provides favorable properties for applications of wheat straw/PLA composites.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Leejarkpai T, Mungcharoen T, Suwanmanee U (2016) Comparative assessment of global warming impact and eco-efficiency of PS (polystyrene), PET (polyethylene terephthalate) and PLA (polylactic acid) boxes. J Clean Prod 125:95–107

    Article  CAS  Google Scholar 

  2. Ncube LK, Ude AU, Ogunmuyiwa EN, Zulkifli R, Beas IN (2020) Environmental impact of food packaging materials: a review of contemporary development from conventional plastics to polylactic acid based materials. Materials 13(21):4994

    Article  CAS  PubMed Central  Google Scholar 

  3. Reichert CL, Bugnicourt E, Coltelli MB, Cinelli P, Lazzeri A, Canesi I, Braca F, Martinez BM, Alonso R, Agostinis L, Verstichel S, Six L, Mets S, Gomez EC, Issbrucker C, Geerinck R, Nettleton DF, Campos I, Sauter E, Pieczyk P, Schmid M (2020) Bio-based packaging: materials, modifications, industrial applications and sustainability. Polymers 12(7):1558

    Article  CAS  PubMed Central  Google Scholar 

  4. Madhavan Nampoothiri K, Nair NR, John RP (2010) An overview of the recent developments in polylactide (PLA) research. Bioresour Technol 101(22):8493–8501

    Article  CAS  PubMed  Google Scholar 

  5. Li G, Zhao M, Xu F, Yang B, Li X, Meng X, Teng L, Sun F, Li Y (2020) Synthesis and biological application of polylactic acid. Molecules 25(21):5023

    Article  CAS  PubMed Central  Google Scholar 

  6. Davachi SM, Kaffashi B (2015) Polylactic acid in medicine. Polym-Plast Technol 54(9):944–967

    Article  CAS  Google Scholar 

  7. Graupner N, Herrmann AS, Mussig J (2009) Natural and man-made cellulose fibre-reinforced poly(lactic acid) (PLA) composites: an overview about mechanical characteristics and application areas. Composites A 40(6–7):810–821

    Article  Google Scholar 

  8. Murariu M, Dubois P (2016) PLA composites: from production to properties. Adv Drug Deliv Rev 107:17–46

    Article  CAS  PubMed  Google Scholar 

  9. Ghaffar SH, Fan M, McVicar B (2017) Interfacial properties with bonding and failure mechanisms of wheat straw node and internode. Composites A 99:102–112

    Article  CAS  Google Scholar 

  10. Ghaffar SH, Fan M (2017) An aggregated understanding of physicochemical properties and surface functionalities of wheat straw node and internode. Ind Crop Prod 95:207–215

    Article  CAS  Google Scholar 

  11. Ghaffar SH, Fan M, Zhou Y, Abo Madyan O (2017) Detailed analysis of wheat straw node and internode for their prospective efficient utilization. J Agric Food Chem 65(41):9069–9077

    Article  CAS  PubMed  Google Scholar 

  12. Chougan M, Ghaffar SH, Al-Kheetan MJ, Gecevicius M (2020) Wheat straw pre-treatments using eco-friendly strategies for enhancing the tensile properties of bio-based polylactic acid composites. Ind Crop Prod 155:112836

    Article  CAS  Google Scholar 

  13. Zhu LX, Qiu JH, Liu WD, Sakai E (2019) Mechanical and thermal properties of rice Straw/PLA modified by nano Attapulgite/PLA interfacial layer. Compos Commun 13:18–21

    Article  Google Scholar 

  14. Frisoni G, Baiardo M, Scandola M, Lednicka D, Cnockaert MC, Mergaert J, Swings J (2001) Natural cellulose fibers: heterogeneous acetylation kinetics and biodegradation behavior. Biomacromol 2(2):476–482

    Article  CAS  Google Scholar 

  15. Islam MS, Pickering KL, Foreman NJ (2010) Influence of alkali treatment on the interfacial and physico-mechanical properties of industrial hemp fibre reinforced polylactic acid composites. Composites A 41(5):596–603

    Article  Google Scholar 

  16. Huerta-Cardoso O, Durazo-Cardenas I, Longhurst P, Simms NJ, Encinas-Oropesa A (2020) Fabrication of agave tequilana bagasse/PLA composite and preliminary mechanical properties assessment. Ind Crop Prod 152:112523

    Article  CAS  Google Scholar 

  17. Bakar N, Chee CY, Abdullah LC, Ratnam CT, Azowa N (2014) Effect of methyl methacrylate grafted kenaf on mechanical properties of polyvinyl chloride/ethylene vinyl acetate composites. Composites A 63:45–50

    Article  CAS  Google Scholar 

  18. Wang YN, Weng YX, Wang L (2014) Characterization of interfacial compatibility of polylactic acid and bamboo flour (PLA/BF) in biocomposites. Polym Test 36:119–125

    Article  Google Scholar 

  19. Kord B, Ghalehno MD, Movahedi F (2019) Effect of surface functionalization of SiO2 nanoparticles on the dynamic mechanical, thermal and fire properties of wheat Straw/LDPE composites. J Polym Environ 28(1):304–316

    Article  Google Scholar 

  20. Zuo Y, Chen K, Li P, He X, Li W, Wu Y (2020) Effect of nano-SiO2 on the compatibility interface and properties of polylactic acid-grafted-bamboo fiber/polylactic acid composite. Int J Biol Macromol 157:177–186

    Article  CAS  PubMed  Google Scholar 

  21. Foruzanmehr M, Vuillaume PY, Elkoun S, Robert M (2016) Physical and mechanical properties of PLA composites reinforced by TiO2 grafted flax fibers. Mater Des 106:295–304

    Article  CAS  Google Scholar 

  22. Wang D, Xuan LH, Han GP, Wong AHH, Wang QX, Cheng WL (2020) Preparation and characterization of foamed wheat straw fiber/polypropylene composites based on modified nano-TiO2 particles. Composites A 128:105674

    Article  CAS  Google Scholar 

  23. Xuan L, Han G, Wang D, Cheng W, Gao X, Chen F, Li Q (2017) Effect of surface-modified TiO2 nanoparticles on the anti-ultraviolet aging performance of foamed wheat straw fiber/polypropylene composites. Materials 10(5):456

    Article  PubMed Central  Google Scholar 

  24. Jia S, Zhang X, Zhao Z, Chen L, Fu L (2020) Effects of accelerated aging on properties of PLA/TiO2 composites. Eng Plast Appl 48(09):103–109+120.

  25. Li WZ, Zheng LG, Teng DF, Ge DS, Farha FI, Xu FJ (2020) Interfacial modified unidirectional wheat straw/polylactic acid composites. J Ind Text 1528083720918172.

  26. Meng D, Kumar SK, Ge T, Robbins MO, Grest GS (2016) Crazing of nanocomposites with polymer-tethered nanoparticles. J Chem Phys 145(9):094902

    Article  PubMed  Google Scholar 

  27. Mallakpour S, Barati A (2011) Efficient preparation of hybrid nanocomposite coatings based on poly(vinyl alcohol) and silane coupling agent modified TiO2 nanoparticles. Prog Org Coat 71(4):391–398

    Article  CAS  Google Scholar 

  28. Li G, Yue J, Guo CH, Ji YS (2018) Influences of modified nanoparticles on hydrophobicity of concrete with organic film coating. Constr Build Mater 169:1–7

    Article  CAS  Google Scholar 

  29. Wang CX, Mao HY, Wang CX, Fu SH (2011) Dispersibility and hydrophobicity analysis of titanium dioxide nanoparticles grafted with silane coupling agent. Ind Eng Chem Res 50(21):11930–11934

    Article  CAS  Google Scholar 

  30. Sabzi M, Mirabedini SM, Zohuriaan-Mehr J, Atai M (2009) Surface modification of TiO2 nano-particles with silane coupling agent and investigation of its effect on the properties of polyurethane composite coating. Prog Org Coat 65(2):222–228

    Article  CAS  Google Scholar 

  31. Rangarajan S, Aswath PB (2011) Role of precursor chemistry on synthesis of Si-O-C and Si-O-C-N ceramics by polymer pyrolysis. J Mater Sci 46(7):2201–2211

    Article  CAS  Google Scholar 

  32. Li D, Guo X, Song H, Sun T, Wan J (2018) Preparation of RuO2-TiO2/Nano-graphite composite anode for electrochemical degradation of ceftriaxone sodium. J Hazard Mater 351:250–259

    Article  CAS  PubMed  Google Scholar 

  33. Diez-Pascual AM, Naffakh M (2012) Tuning the properties of carbon fiber-reinforced poly(phenylene sulphide) laminates via incorporation of inorganic nanoparticles. Polymer 53(12):2369–2378

    Article  CAS  Google Scholar 

  34. Pei AH, Zhou Q, Berglund LA (2010) Functionalized cellulose nanocrystals as biobased nucleation agents in poly(L-lactide) (PLLA)—crystallization and mechanical property effects. Compos Sci Technol 70(5):815–821

    Article  CAS  Google Scholar 

  35. Elsawy MA, Kim KH, Park JW, Deep A (2017) Hydrolytic degradation of polylactic acid (PLA) and its composites. Renew Sust Energ Rev 79:1346–1352

    Article  CAS  Google Scholar 

  36. Suryanegara L, Nakagaito AN, Yano H (2009) The effect of crystallization of PLA on the thermal and mechanical properties of microfibrillated cellulose-reinforced PLA composites. Compos Sci Technol 69(7–8):1187–1192

    Article  CAS  Google Scholar 

  37. Lion A, Kardelky C (2004) The Payne effect in finite viscoelasticity: constitutive modelling based on fractional derivatives and intrinsic time scales. Int J Plast 20(7):1313–1345

    Article  CAS  Google Scholar 

  38. Wang H, Memon H, Hassan EAM, Elagib THH, Hassan FEAA, Yu MH (2019) Rheological and dynamic mechanical properties of abutilon natural straw and polylactic acid biocomposites. Int J Polym Sci 2019:8732520

    Google Scholar 

  39. Gauthier C, Reynaud E, Vassoille R, Ladouce-Stelandre L (2004) Analysis of the non-linear viscoelastic behaviour of silica filled styrene butadiene rubber. Polymer 45(8):2761–2771

    Article  CAS  Google Scholar 

  40. Drumright RE, Gruber PR, Henton DE (2000) Polylactic acid technology. Adv Mater 12(23):1841–1846

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the Scientific Research Project of Hunan Provincial Education Department, PR China (18A157) and Hunan Provincial Technical Innovation Platform and Talent Program in Science and Technology, PR China (2019RS2040).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yingfeng Zuo.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, K., Liao, C., Li, P. et al. A Compatible Interface of Wheat Straw/Polylactic Acid Composites Collaborative Constructed Using KH570–Nano TiO2. J Polym Environ 30, 2209–2221 (2022). https://doi.org/10.1007/s10924-021-02359-0

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10924-021-02359-0

Keywords

Navigation