Skip to main content
Log in

Water Adsorption Thermodynamical Analysis and Mechanical Characterization of Chitosan and Polyvinyl Alcohol-Based Films

  • Original Paper
  • Published:
Journal of Polymers and the Environment Aims and scope Submit manuscript

Abstract

Chitosan and polyvinyl alcohol films were prepared by the casting method. Moisture adsorption isotherms were obtained at 15 °C, 20 °C, 25 °C and 30 °C. Experimental isotherms were well fitted using the GAB model (E < 10%). The thermodynamic analysis showed a minimum integral entropy (∆Sint) at the 0.3–0.6 range of water activity (aw) in all films. Pore radius values of the films ranged from 1.005 nm to 20.766 nm, which correspond to the micropores and mesopores classification. Compensation enthalpy-entropy in films showed that the water vapor adsorption process was driven by enthalpy at low aw values (0.3–0.5 for CS and 0.2–0.3 for PVA). Most of the mechanical properties showed constant values at the zone of minimum ∆Sint, confirming that thermodynamic properties could be used to predict the stability of films. The study of thermodynamic water adsorption and the mechanical properties allows understanding the preparation process of stable films with adequate parameters intended for food packaging materials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data Availability

The authors declare the transparency of data.

Code Availability

Software and programs used in this manuscript have license to be used.

References

  1. Cazon P, Vázquez M, Velazquez G (2018) Cellulose-glycerol-polyvinyl alcohol composite films for food packaging: evaluation of water adsorption, mechanical properties, light-barrier properties and transparency. Carbohyd Polym 195(9):432–443. https://doi.org/10.1016/j.carbpol.2018.04.120

    Article  CAS  Google Scholar 

  2. Aider M (2010) Chitosan application for active bio-based films production and potential in the food industry. LWT-Food Science and Technology 43(6):837–842. https://doi.org/10.1016/j.lwt.2010.01.021

    Article  CAS  Google Scholar 

  3. Neto CDT, Giacometti JA, Job AE, Ferreira FC, Fonseca JLC, Pereira MR (2005) Thermal analysis of chitosan based networks. Carbohyd Polym 62(2):97–103. https://doi.org/10.1016/j.carbpol.2005.02.022

    Article  CAS  Google Scholar 

  4. Ahmadi F, Oveisi Z, Samani SM, Amoozgar Z (2015) Chitosan based hydrogels: characteristics and pharmaceutical applications. Res Pharm Sci 10(1):1

    Article  CAS  Google Scholar 

  5. Dresvyanina EN, Grebennikov SF, Elokhovskii VY, Dobrovolskaya IP, Ivan’kova EM, Yudin VE, Heppe K, Morganti P (2020) Thermodynamics of interaction between water and the composite films based on chitosan and chitin nanofibrils. Carbohydrate Polym245: 116552. https://doi.org/10.1016/j.carbpol.2020.116552

  6. Koski A, Yim K, Shivkumar SJML (2004) Effect of molecular weight on fibrous PVA produced by electrospinning. Mater Lett 58(3–4):493–497

    Article  CAS  Google Scholar 

  7. Jiang S, Liu S, Feng W (2011) PVA hydrogel properties for biomedical application. J Mech Behav Biomed Mater 4(7):1228–1233

    Article  CAS  Google Scholar 

  8. Deshmukh K, Ahamed MB, Deshmukh RR, Pasha SK, Bhagat PR, Chidambaram K (2017) Biopolymer composites with high dielectric performance: interface engineering. Biopolymer composites in electronics. Elsevier p. 27–128.

  9. Srinivasa PC, Ramesh MN, Kumar KR, Tharanathan RN (2003) Properties and sorption studies of chitosan–polyvinyl alcohol blend films. Carbohyd Polym 53(4):431–438. https://doi.org/10.1016/S0144-8617(03)00105-X

    Article  CAS  Google Scholar 

  10. Teodorescu M, Bercea M, Morariu S (2019) Biomaterials of PVA and PVP in medical and pharmaceutical applications: perspectives and challenges. Biotechnol Adv 37(1):109. https://doi.org/10.1016/j.biotechadv.2018.11.008

    Article  CAS  PubMed  Google Scholar 

  11. Aguirre-Loredo RY, Rodríguez-Hernández AI, Morales-Sánchez E, Gómez-Aldapa CA, Velazquez G (2016) Effect of equilibrium moisture content on barrier, mechanical and thermal properties of chitosan films. Food Chem 196:560–566. https://doi.org/10.1016/j.foodchem.2015.09.065

    Article  CAS  PubMed  Google Scholar 

  12. Bourbon AI, Pinheiro AC, Cerqueira MA, Rocha CMR, Avides MC, Quintas MAC, Vicente AA (2011) Physico-chemical characterization of chitosan-based edible films incorporating bioactive compounds of different molecular weight. J Food Eng 106(2):111–118. https://doi.org/10.1016/j.jfoodeng.2011.03.024

    Article  CAS  Google Scholar 

  13. Cissé M, Montet D, Tapia MS, Loiseau G, Ducamp-Collin MN (2012) Influence of temperature and relative humidity on the immobilized lactoperoxidase system in a functional chitosan film. Food Hydrocolloids 28(2):361–366. https://doi.org/10.1016/j.foodhyd.2012.01.012

    Article  CAS  Google Scholar 

  14. Gómez-Aldapa CA, Velazquez G, Gutierrez MC, Rangel-Vargas E, Castro-Rosas J, Aguirre-Loredo RY (2020) Effect of polyvinyl alcohol on the physicochemical properties of biodegradable starch films. Mater Chem Phys 239:122027. https://doi.org/10.1016/j.matchemphys.2019.122027

    Article  CAS  Google Scholar 

  15. Rouhi M, Razavi SH, Mousavi SM (2017) Optimization of crosslinked poly(vinyl alcohol) nanocomposite films for mechanical properties. Mater Sci Eng, C 71(2):1052–1063. https://doi.org/10.1016/j.msec.2016.11.135

    Article  CAS  Google Scholar 

  16. Satokawa Y, Shikata T (2008) Hydration structure and dynamic behavior of poly (vinyl alcohol)s in aqueous solution. Macromolecules 41(8):2908–2913. https://doi.org/10.1021/ma702793t

    Article  CAS  Google Scholar 

  17. McCune TD, Lang KW, Steinberg MP (1981) Water activity determination with the proximity equilibration cell. J Food Sci 46(6):1978–1979. https://doi.org/10.1111/j.1365-2621.1981.tb04542.x

    Article  CAS  Google Scholar 

  18. Labuza TP, Kaanane A, Chen JY (1985) Effect of temperature on the moisture sorption isotherms and water activity shift of two dehydrated foods. J Food Sci 50(2):385–392. https://doi.org/10.1111/j.1365-2621.1985.tb13409.x

    Article  CAS  Google Scholar 

  19. Cassini AS, Marczak LDF, Noreña CPZ (2006) Water adsorption isotherms of texturized soy protein. J Food Eng 77(1):194–199. https://doi.org/10.1016/j.jfoodeng.2005.05.059

    Article  CAS  Google Scholar 

  20. Rosa GS, Moraes MA, Pinto LAA (2010) Moisture sorption properties of chitosan. LWT Food Sci Technol 43(3):415–420. https://doi.org/10.1016/j.lwt.2009.09.003

    Article  CAS  Google Scholar 

  21. Sonwane CG, Bhatia SK (2000) Characterization of pore size distributions of mesoporous materials from adsorption isotherms. J Phys Chem B 104(39):9099–9190. https://doi.org/10.1021/jp000907j

    Article  CAS  Google Scholar 

  22. Moraes K, Pinto LAA (2012) Desorption isotherms and thermodynamics properties of anchovy in natura and enzymatic modified paste. J Food Eng 110(4):507–513. https://doi.org/10.1016/j.jfoodeng.2012.01.012

    Article  CAS  Google Scholar 

  23. Esquerdo VM, Monte M L, de Pinto LA (2019) Microstructures containing nanocapsules of unsaturated fatty acids with biopolymers: characterization and thermodynamic properties. J Food Eng 248: 28–35. https://doi.org/10.1016/j.jfoodeng.2018.12.015

  24. Monte ML, Moreno ML, Senna J, Arrieche LS, Pinto LAA (2018) Moisture sorption isotherms of chitosan-glycerol films: Thermodynamic properties and microstructure. Food Biosci 22(February):170–177. https://doi.org/10.1016/j.fbio.2018.02.004

    Article  CAS  Google Scholar 

  25. Othmer DF (1940) Correlating vapor pressure and latent heat data. Ind Eng Chem 32:841–856. https://doi.org/10.1021/ie50366a022

    Article  CAS  Google Scholar 

  26. Beristain CI, Diaz R, Garcia HS, Azuara E (1994) Thermodynamic behavior of green whole and decaffeinated coffee beans during adsorption. Drying Technol 12:1221–1233. https://doi.org/10.1080/07373939408960997

    Article  Google Scholar 

  27. Wexler A (1976) Vapor pressure formulation for water in range 0 to 100°C. A revision. J Res Nat Bureau Standards Sect A Phys Chem 80:775–785. https://doi.org/10.6028/jres.080A.071

    Article  Google Scholar 

  28. Krug RR, Hunter WG, Grieger RA (1976) Enthalpy-entropy compensation. 1. Some fundamental statistical problems associated with the analysis of van’t Hoff and Arrhenius data. J Phys Chem 80:2335–2341. https://doi.org/10.1021/j100562a006

    Article  CAS  Google Scholar 

  29. ASTM (2012) D882–12 Standard test method for tensile properties of thin plastic sheeting. ASTM Int , West Conshohocken, PA. https://doi.org/10.1520/D0882-12

    Article  Google Scholar 

  30. Brunauer S, Emmett PH, Teller E (1938) Adsorption of gases in multimolecular layers. J Am Chem Soc 60:301–319. https://doi.org/10.1021/ja01269a023

    Article  Google Scholar 

  31. Bell LN, Labuza T (2000) Moisture sorption: practical aspects of isotherm measurement and use, 2nd edn. American Association of Cereal Chemists. Inc., St. Paul, USA (ISBN: 1891127187, 9781891127182)

    Google Scholar 

  32. Viveros-Contreras R, Téllez-Medina DI, Perea-Flores MJ, Alamilla-Beltrán L, Cornejo-Mazón M, Beristain-Guevara CI, Azuara-Nieto E, Gutiérrez-López GF (2013) Encapsulation of ascorbic acid into calcium alginate matrices through coacervation coupled to freeze-drying. Revista Mexicana de Ingeniería Química 12(1): 29–39. http://rmiq.org/ojs311/index.php/rmiq/article/view/1449

  33. Viganó J, Azuara E, Telis V, Beristain CI, Jiménez M, Telis-Romero J (2012) Role of enthalpy and entropy in moisture sorption behavior of pineapple pulp powder produced by different drying methods. Thermochim Acta 528:63–71. https://doi.org/10.1016/j.tca.2011.11.011

    Article  CAS  Google Scholar 

  34. Alpizar-Reyes E, Castaño J, Carrillo-Navas H, Alvarez-Ramírez J, Gallardo-Rivera R, Pérez-Alonso C, Guadarrama-Lezama AY (2018) Thermodynamic sorption analysis and glass transition temperature of faba bean (Vicia faba L.) protein. J Food Sci Technol 55(3):935–943. https://doi.org/10.1007/s13197-017-3001-1

  35. McLaughlin CP, Magee TRA (1998) The determination of sorption isotherm and the isosteric heats of sorption for potatoes. J Food Eng 35(3):267–280. https://doi.org/10.1016/S0260-8774(98)00025-9

    Article  Google Scholar 

  36. Rueda DR, Secall T, Bayer RK (1999) Differences in the interaction of water with starch and chitosan films as revealed by infrared spectroscopy and differential scanning calorimetry. Carbohyd Polym 40(1):49–56. https://doi.org/10.1016/S0144-8617(99)00033-8

    Article  CAS  Google Scholar 

  37. Guadarrama-Lezama AY, Jaramillo-Flores E, Gutiérrez-López GF, Pérez-Alonso C, Dorantes-Álvarez L, Alamilla-Beltrán L (2014) Effects of storage temperature and water activity on the degradation of carotenoids contained in microencapsulated chili extract. Drying Technol 32(12):1435–1447. https://doi.org/10.1080/07373937.2014.900502

    Article  CAS  Google Scholar 

  38. Aguirre-Loredo RY, Rodriguez-Hernandez AI, Velazquez G (2017) Modelling the effect of temperature on the water sorption isotherms of chitosan films. Food Sci Technol 37(1):112–118. https://doi.org/10.1590/1678-457x.09416

    Article  Google Scholar 

  39. Alpizar-Reyes E, Carrillo-Navas H, Romero-Romero R, Varela-Guerrero V, Alvarez-Ramírez J, Pérez-Alonso C (2017) Thermodynamic sorption properties and glass transition temperature of tamarind seed mucilage (Tamarindus indica L.). Food Bioprod Process 101:166–176. https://doi.org/10.1016/j.fbp.2016.11.006

    Article  CAS  Google Scholar 

  40. Pascual-Pineda LA, Alamilla-Beltrán L, Gutiérrez-López GF, Azuara E, Flores-Andrade E (2017) Prediction of storage conditions of dehydrated foods from a water vapor adsorption isotherm. Revista Mexicana de Ingeniería Química 16:207–220. https://doi.org/10.24275/rmiq/Alim817

  41. Enrione J, Hill S, Mitchell JR, Pedreschi F (2010) Sorption behavior of extruded rice starch in the presence of glycerol. Water Prop Food Health Pharm Biol Syst ISOPOW 10:483–489

    Article  Google Scholar 

  42. Martín-Martínez JM (1990) Adsorción física de gases y vapores por carbones. Universidad de Alicante, Secretariado de Publicaciones (ISBN: 84-86809-33-9)

    Google Scholar 

  43. Mucha M, Ludwiczak S (2006) Dynamics of water sorption to nanopores of polymer biomaterials. Mol Cryst Liq Cryst 448(1):133–735. https://doi.org/10.1080/15421400500387882

    Article  CAS  Google Scholar 

  44. Ogawa K, Yui T, Okuyama K (2004) Three D structures of chitosan. Int J Biol Macromol 34(1–2):1–8. https://doi.org/10.1016/j.ijbiomac.2003.11.002

    Article  CAS  PubMed  Google Scholar 

  45. Rivero S, Damonte L, García MA, Pinotti A (2016) An insight into the role of glycerol in chitosan films. Food Biophys 11(2):117–127. https://doi.org/10.1007/s11483-015-9421-4

    Article  Google Scholar 

  46. Okuyama K, Noguchi K, Miyazawa T, Yui T, Ogawa K (1997) Molecular and crystal structure of hydrated chitosan. Macromolecules 30(19):5849–5855. https://doi.org/10.1021/ma970509n

    Article  CAS  Google Scholar 

  47. Hodge RM, Bastow TJ, Edward GH, Simon GP, Hill AJ (1996) Free volume and the mechanism of plasticization in water-swollen poly (vinyl alcohol). Macromolecules 29(25):8137–8143. https://doi.org/10.1021/ma951073j

    Article  CAS  Google Scholar 

  48. Smith JM, Van Ness HC, Abbott MM (2005) Introduction to chemical engineering thermodynamics. McGraw-Hill, New York. ISBN 13: 9780071270557.

  49. Xiao Q, Tong Q (2013) Thermodynamic properties of moisture sorption in pullulan–sodium alginate based edible films. Food Res Int 54(2):1605–1612. https://doi.org/10.1016/j.foodres.2013.09.019

    Article  CAS  Google Scholar 

  50. Bonilla E, Azuara E, Beristain CI, Vernon-Carter EJ (2010) Predicting suitable storage conditions for spray-dried microcapsules formed with different biopolymer matrices. Food Hydrocolloids 24(6):633–640. https://doi.org/10.1016/j.foodhyd.2010.02.010

    Article  CAS  Google Scholar 

  51. McMinn WAM, Magee TRA (2003) Thermodynamic of moisture sorption of potato. J Food Eng 60(2):157–165. https://doi.org/10.1016/S0260-8774(03)00036-0

    Article  Google Scholar 

  52. Azuara E, Beristain CI (2006) Enthalpic and entropic mechanisms related to water sorption of yogurt. Drying Technol 24(11):1501–1507. https://doi.org/10.1080/07373930600961173

    Article  CAS  Google Scholar 

  53. Gabas AL, Menegalli FC, Telis-Romero J (2000) Water sorption enthalpy-entropy compensation based on isotherms of plum skin and pulp. J Food Sci 65(4):680–680. https://doi.org/10.1111/j.1365-2621.2000.tb16072.x

    Article  CAS  Google Scholar 

  54. Krug RR, Hunter WG, Grieger RA (1976) Enthalpy-entropy compensation. 2-Separation of the chemical from the statistical effect. J Phys Chem 80:2341–2351. https://doi.org/10.1021/j100562a007

    Article  CAS  Google Scholar 

  55. Suppakul P, Chalernsook B, Ratisuthawat B, Prapasitthi S, Munchukangwan N (2013) Empirical modeling of moisture sorption characteristics and mechanical and barrier properties of cassava flour film and their relation to plasticizing–antiplasticizing effects. LWT-Food Science and Technology 50(1):290–297. https://doi.org/10.1016/j.lwt.2012.05.013

    Article  CAS  Google Scholar 

  56. Castaño J, Bouza R, Rodríguez-Llamazares S, Carrasco C, Vinicius R (2012) Processing and characterization of starch-based materials from pehuen seeds (Araucaria araucana (Mol) K. Koch). Carbohyd Polym 88:299–307. https://doi.org/10.1016/j.carbpol.2011.12.008

    Article  CAS  Google Scholar 

  57. Cazon P, Velazquez G, Vazquez M (2020) Regenerated cellulose films combined with glycerol and polyvinyl alcohol: effect of moisture content on the physical properties. Food Hydrocolloids 103(6):105657. https://doi.org/10.1016/j.foodhyd.2020.105657

    Article  CAS  Google Scholar 

  58. Cazon P, Vazquez M, Velazquez G (2020) Regenerated cellulose films with chitosan and polyvinyl alcohol: effect of the moisture content on the barrier, mechanical and optical properties. Carbohyd Polym 236(5):116031. https://doi.org/10.1016/j.carbpol.2020.116031

    Article  CAS  Google Scholar 

  59. Cazon P, Velazquez G, Vazquez M (2020) Environmentally friendly films combining bacterial cellulose, chitosan and polyvinyl alcohol: effect of water activity on barrier, mechanical and optical properties. Biomacromol 21(2):753–760. https://doi.org/10.1021/acs.biomac.9b01457

    Article  CAS  Google Scholar 

  60. Liu L, Liang H, Zhang J, Zhang P, Xu Q, Lu Q, Zhang C (2018) Poly(Vinyl Alcohol)/chitosan composites: physically transient materials for sustainable and transient bioelectronics. J Clean Prod 195(10):786–795. https://doi.org/10.1016/j.jclepro.2018.05.216

    Article  CAS  Google Scholar 

Download references

Funding

This research did not receive any specific grant from funding agencies in the public, commercial, or not-for-profit sectors.

Author information

Authors and Affiliations

Authors

Contributions

RYAL: Conceptualization; Resources; Methodology; Software; Validation; Investigation; Writing—Original Draft; Writing—Review & Editing; Visualization; Supervision; Project administration. G V: Conceptualization; Resources; Writing—Original Draft; Project administration; Funding acquisition. Validation; Formal analysis. AYGL: Conceptualization; Data Curation; Writing—Original Draft; Writing—Review & Editing; Visualization; Supervision. RVC: Conceptualization; Data Curation; Writing—Original Draft; Writing—Review & Editing; Visualization; Supervision; Validation; Formal analysis. JC: Conceptualization; Data Curation; Writing—Original Draft; Writing—Review & Editing; Visualization; Supervision. Validation; Formal analysis.

Corresponding authors

Correspondence to Andrea Y. Guadarrama-Lezama or Rubi Viveros-Contreras.

Ethics declarations

Conflict of Interest

The authors have no relevant financial or non-financial interests to disclose.

Ethical Approval

The authors statement that the manuscript it is original and it has not been submitted elsewhere.

Consent to Participate

Not applicable.

Consent for Publication

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Aguirre-Loredo, R.Y., Velazquez, G., Guadarrama-Lezama, A.Y. et al. Water Adsorption Thermodynamical Analysis and Mechanical Characterization of Chitosan and Polyvinyl Alcohol-Based Films. J Polym Environ 30, 1880–1892 (2022). https://doi.org/10.1007/s10924-021-02316-x

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10924-021-02316-x

Keywords

Navigation