Skip to main content
Log in

Active Bio-composite Sodium Alginate/Maltodextrin Packaging Films for Food Containing Azolla pinnata Leaves Extract as Natural Antioxidant

  • Original Paper
  • Published:
Journal of Polymers and the Environment Aims and scope Submit manuscript

Abstract

The aim of the current work was to produce sodium alginate (SA) maltodextrins (MD) based functional films incorporated with phenolic extract of Azolla pinnata leaves fern (AF) by solution molding technique. AF with different concentrations (0.8, 1.2 and 1.6% w/w) were integrated inside SA.MD films. The resulted films were characterized to investigate the surface structure by scanning electron microscope (SEM), thermal disposal by (DSC), crystallization by X-ray diffraction (XRD), potential interaction by (FT-IR) and some mechanical properties. The SEM micrographs indicated that the higher concentration (1.6%) of AF extract caused development of wrinkles on the surface of films. And as a result, there were a significant decrease of elongation at break (EB) and tensile strength properties of films to 55.01 and 58.42%, respectively. By continues addition of AF extract to SA.MD films, the film thickness increased from 0.124 to 0.181 mm, the scavenging and antimicrobial properties were enhanced by the attendance of ferulic acid, rutin, thiamine, tamarixetin, astragalin, quercetin, chlorogenic acid and epicatechin inside extracts. Furthermore, the films solubility, swelling degree and water vapor permeability were decreased to 13.08%, 26.41% and 1.662 × 10− 10 g H2O/m s p.a. The resulted films could be utilized as composite packaging material for different food applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Abbreviations

SA:

Sodium alginate

MD:

Maltodextrins

AF:

Phenolic extract of Azolla pinnata leaves fern

SA.MD-AF:

Sodium alginate maltodextrins Azolla pinnata fern film

Eg:

Elongation at break

Ts:

Tensile strength

References

  1. Senturk Parreidt T, Müller K, Schmid M (2018) Alginate-based edible films and coatings for food packaging applications. Foods 7(10):170

    Article  Google Scholar 

  2. Risch SJ (2009) Food packaging history and innovations. J Agric Food Chem 57(18):8089–8092

    Article  CAS  PubMed  Google Scholar 

  3. Ramos ÓL, Reinas I, Silva SI, Fernandes JC, Cerqueira MA, Pereira RN, Vicente AA, Poças MF, Pintado ME, Malcata FX (2013) Effect of whey protein purity and glycerol content upon physical properties of edible films manufactured therefrom. Food Hydrocolloids 30(1):110–122

    Article  CAS  Google Scholar 

  4. Marsh K, Bugusu B (2007) Food packaging—roles, materials, and environmental issues. J Food Sci 72(3):R39–R55

    Article  CAS  PubMed  Google Scholar 

  5. Guilbert S, Gontard N, Cuq B (1995) Technology and applications of edible protective films. Packag Technol Sci 8(6):339–346

    Article  CAS  Google Scholar 

  6. Embuscado ME, Huber KC (2009) Edible films and coatings for food applications. Springer, London

    Google Scholar 

  7. Gontard N, Guilbert S (1994) Bio-packaging: technology and properties of edible and/or biodegradable material of agricultural origin. In: Food packaging and preservation. Springer, pp 159–181

  8. Guilbert S, Gontard N, Gorris LG (1996) Prolongation of the shelf-life of perishable food products using biodegradable films and coatings. LWT-Food Sci Technol 29(1–2):10–17

    Article  CAS  Google Scholar 

  9. Gharsallaoui A, Roudaut G, Chambin O, Voilley A, Saurel R (2007) Applications of spray-drying in microencapsulation of food ingredients: an overview. Food Res Int 40(9):1107–1121

    Article  CAS  Google Scholar 

  10. Goula AM, Adamopoulos KG (2012) A new technique for spray-dried encapsulation of lycopene. Drying Technol 30(6):641–652

    Article  CAS  Google Scholar 

  11. Atef M, Rezaei M, Behrooz R (2014) Preparation and characterization agar-based nanocomposite film reinforced by nanocrystalline cellulose. Int J Biol Macromol 70(8):537–544

    Article  CAS  PubMed  Google Scholar 

  12. Gazori T, Khoshayand MR, Azizi E, Yazdizade P, Nomani A, Haririan I (2009) Evaluation of Alginate/Chitosan nanoparticles as antisense delivery vector: formulation, optimization and in vitro characterization. Carbohydr Polym 77(3):599–606

    Article  CAS  Google Scholar 

  13. Liu S, Li Y, Li L (2017) Enhanced stability and mechanical strength of sodium alginate composite films. Carbohydr Polym 160:62–70

    Article  PubMed  Google Scholar 

  14. Varaprasad K, Raghavendra GM, Jayaramudu T, Seo J (2016) Nano zinc oxide–sodium alginate antibacterial cellulose fibres. Carbohydr Polym 135:349–355

    Article  CAS  PubMed  Google Scholar 

  15. Tavassoli-Kafrani E, Shekarchizadeh H, Masoudpour-Behabadi M (2016) Development of edible films and coatings from alginates and carrageenans. Carbohydr Polym 137:360–374

    Article  CAS  PubMed  Google Scholar 

  16. Cazón P, Velazquez G, Ramírez JA, Vázquez M (2017) Polysaccharide-based films and coatings for food packaging: a review. Food Hydrocoll 68:136–148

    Article  Google Scholar 

  17. Talón E, Trifkovic KT, Vargas M, Chiralt A, González-Martínez C (2017) Release of polyphenols from starch-chitosan based films containing thyme extract. Carbohydr Polym 175:122–130

    Article  Google Scholar 

  18. Roy D, Kumar V, Kumar M, Sirohi R, Singh Y, Singh JK (2016) Effect of feeding Azolla pinnata on growth performance, feed intake, nutrient digestibility and blood biochemical’s of Hariana heifers fed on roughage based diet. Indian J Dairy Sci 69(2):190–196

    Google Scholar 

  19. Mithraja MJ, Marimuthu J, Mahesh M, Paul ZM, Jeeva S (2011) Phytochemical studies on Azolla pinnata R. Br., Marsilea minuta L. and Salvinia molesta Mitch. Asian Pac J Trop Biomed 1(1):S26–S29

    Article  Google Scholar 

  20. Lavelli V, Harsha PSS, Laureati M, Pagliarini E (2017) Degradation kinetics of encapsulated grape skin phenolics and micronized grape skins in various water activity environments and criteria to develop wide-ranging and tailor-made food applications. Innov Food Sci Emerg Technol 39:156–164

    Article  CAS  Google Scholar 

  21. Corey ME, Kerr WL, Mulligan JH, Lavelli V (2011) Phytochemical stability in dried apple and green tea functional products as related to moisture properties. LWT-Food Sci Technol 44(1):67–74

    Article  CAS  Google Scholar 

  22. Siripatrawan U, Harte BR (2010) Physical properties and antioxidant activity of an active film from chitosan incorporated with green tea extract. Food Hydrocoll 24(8):770–775

    Article  CAS  Google Scholar 

  23. Kim S, Baek S-K, Song KB (2018) Physical and antioxidant properties of alginate films prepared from Sargassum fulvellum with black chokeberry extract. Food Packag Shelf Life 18:157–163

    Article  Google Scholar 

  24. Zhang P, Zhao Y, Shi Q (2016) Characterization of a novel edible film based on gum ghatti: effect of plasticizer type and concentration. Carbohydr Polym 153:345–355

    Article  CAS  PubMed  Google Scholar 

  25. Park S-i, Zhao Y (2004) Incorporation of a high concentration of mineral or vitamin into chitosan-based films. J Agric Food Chem 52(7):1933–1939

    Article  CAS  PubMed  Google Scholar 

  26. Rui L, Xie M, Hu B, Zhou L, Yin D, Zeng X (2017) A comparative study on chitosan/gelatin composite films with conjugated or incorporated gallic acid. Carbohydr Polym 173:473–481

    Article  CAS  PubMed  Google Scholar 

  27. Reddy JP, Rhim J-W (2014) Characterization of bionanocomposite films prepared with agar and paper-mulberry pulp nanocellulose. Carbohydr Polym 110:480–488

    Article  CAS  PubMed  Google Scholar 

  28. Wang X, Yong H, Gao L, Li L, Jin M, Liu J (2019) Preparation and characterization of antioxidant and pH-sensitive films based on chitosan and black soybean seed coat extract. Food Hydrocoll 89:56–66

    Article  CAS  Google Scholar 

  29. Riaz A, Lagnika C, Luo H, Dai Z, Nie M, Hashim MM, Liu C, Song J, Li D (2020) Chitosan-based biodegradable active food packaging film containing Chinese chive (Allium tuberosum) root extract for food application. Int J Biol Macromol 150:595–604

    Article  CAS  PubMed  Google Scholar 

  30. Abd Elrasoul A, Mousa A, Orabi S, Gadallah S, Abd Eldaim MA (2020) Ameliorative effect of Azolla pinnata ethanolic extract on ranitidine-induced hepatotoxicity in rats. J Curr Vet Res 2(2):87–95

    Article  Google Scholar 

  31. Yadollahi M, Namazi H, Barkhordari S (2014) Preparation and properties of carboxymethyl cellulose/layered double hydroxide bionanocomposite films. Carbohydr Polym 108:83–90

    Article  CAS  PubMed  Google Scholar 

  32. Fabra MJ, Falcó I, Randazzo W, Sánchez G, López-Rubio A (2018) Antiviral and antioxidant properties of active alginate edible films containing phenolic extracts. Food Hydrocolloids 81:96–103

    Article  CAS  Google Scholar 

  33. Abdin M, Salama MA, Gawad R, Fathi MA, Alnadari F (2021) Two-Steps of Gelation System Enhanced the Stability of Syzygium cumini Anthocyanins by Encapsulation with Sodium Alginate, Maltodextrin, Chitosan and Gum Arabic. Journal of Polymers and the Environment:1–14

  34. Loret C, Meunier V, Frith WJ, Fryer PJ (2004) Rheological characterisation of the gelation behaviour of maltodextrin aqueous solutions. Carbohydr Polym 57(2):153–163

    Article  CAS  Google Scholar 

  35. Lam MK, Tan IS, Lee KT (2014) Utilizing lipid-extracted microalgae biomass residues for maltodextrin production. Chem Eng J 235:224–230

    Article  CAS  Google Scholar 

  36. Sonar CR, Parhi A, Liu F, Patel J, Rasco B, Tang J, Sablani SS (2020) Investigating thermal and storage stability of vitamins in pasteurized mashed potatoes packed in barrier packaging films. Food Packaging Shelf Life 24:100486

    Article  Google Scholar 

  37. Hosseini SF, Rezaei M, Zandi M, Farahmandghavi F (2016) Development of bioactive fish gelatin/chitosan nanoparticles composite films with antimicrobial properties. Food Chem 194:1266–1274

    Article  CAS  PubMed  Google Scholar 

  38. Riaz A, Lagnika C, Luo H, Nie M, Dai Z, Liu C, Abdin M, Hashim MM, Li D, Song J (2020) Effect of Chinese chives (Allium tuberosum) addition to carboxymethyl cellulose based food packaging films. Carbohydr Polym 235:115944

    Article  CAS  PubMed  Google Scholar 

  39. Wang X, Xie Y, Ge H, Chen L, Wang J, Zhang S, Guo Y, Li Z, Feng X (2018) Physical properties and antioxidant capacity of chitosan/epigallocatechin-3-gallate films reinforced with nano-bacterial cellulose. Carbohydr Polym 179:207–220

    Article  CAS  PubMed  Google Scholar 

  40. Choi I, Lee SE, Chang Y, Lacroix M, Han J (2018) Effect of oxidized phenolic compounds on cross-linking and properties of biodegradable active packaging film composed of turmeric and gelatin. LWT 93:427–433

    Article  CAS  Google Scholar 

  41. Arfat YA, Ahmed J, Hiremath N, Auras R, Joseph A (2017) Thermo-mechanical, rheological, structural and antimicrobial properties of bionanocomposite films based on fish skin gelatin and silver–copper nanoparticles. Food Hydrocoll 62:191–202

    Article  CAS  Google Scholar 

  42. Amalraj A, Haponiuk JT, Thomas S, Gopi S (2020) Preparation, characterization and antimicrobial activity of polyvinyl alcohol/gum arabic/chitosan composite films incorporated with black pepper essential oil and ginger essential oil. Int J Biol Macromol 151:366–375

    Article  CAS  PubMed  Google Scholar 

  43. Martins JT, Cerqueira MA, Vicente AA (2012) Influence of α-tocopherol on physicochemical properties of chitosan-based films. Food Hydrocoll 27(1):220–227

    Article  CAS  Google Scholar 

  44. Pankaj SK, Bueno-Ferrer C, Misra N, Milosavljević V, O’donnell C, Bourke P, Keener K, Cullen P (2014) Applications of cold plasma technology in food packaging. Trends Food Sci Technol 35(1):5–17

    Article  CAS  Google Scholar 

  45. Qiao C, Ma X, Zhang J, Yao J (2017) Molecular interactions in gelatin/chitosan composite films. Food Chem 235:45–50

    Article  CAS  PubMed  Google Scholar 

  46. Palacios I, Lozano M, Moro C, D’arrigo M, Rostagno M, Martínez J, García-Lafuente A, Guillamón E, Villares A (2011) Antioxidant properties of phenolic compounds occurring in edible mushrooms. Food Chem 128(3):674–678

    Article  CAS  Google Scholar 

  47. Kaya M, Khadem S, Cakmak YS, Mujtaba M, Ilk S, Akyuz L, Salaberria AM, Labidi J, Abdulqadir AH, Deligöz E (2018) Antioxidative and antimicrobial edible chitosan films blended with stem, leaf and seed extracts of Pistacia terebinthus for active food packaging. RSC Adv 8(8):3941–3950

    Article  CAS  Google Scholar 

  48. Pedrali D, Barbarito S, Lavelli V (2020) Encapsulation of grape seed phenolics from winemaking byproducts in hydrogel microbeads: impact of food matrix and processing on the inhibitory activity towards α-glucosidase. LWT 133:109952

    Article  CAS  Google Scholar 

  49. Wu Y, Luo X, Li W, Song R, Li J, Li Y, Li B, Liu S (2016) Green and biodegradable composite films with novel antimicrobial performance based on cellulose. Food Chem 197:250–256

    Article  CAS  PubMed  Google Scholar 

  50. Abraham G, Aeri V (2012) A preliminary examination of the phytochemical profile of Azolla microphylla with respect to seasons. Asian Pac J Trop Biomed 2(3):S1392–S1395

    Article  Google Scholar 

  51. Adamczak A, Ożarowski M, Karpiński TM (2020) Antibacterial activity of some flavonoids and organic acids widely distributed in plants. J Clin Med 9(1):109

    Article  CAS  Google Scholar 

  52. Farhoosh R, Einafshar S, Sharayei P (2009) The effect of commercial refining steps on the rancidity measures of soybean and canola oils. Food Chem 115(3):933–938

    Article  CAS  Google Scholar 

  53. Mariniello L, Giosafatto C, Pierro PD, Sorrentino A, Porta R (2010) Swelling, mechanical, and barrier properties of albedo-based films prepared in the presence of phaseolin cross-linked or not by transglutaminase. Biomacromol 11(9):2394

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The study was supported by a project funded by Kafrelshiekh University, Department of Food Science and Technology.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohamed Abdin.

Ethics declarations

Conflict of interest

The authors have declared that there is no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Eltabakh, M., Kassab, H., Badawy, W. et al. Active Bio-composite Sodium Alginate/Maltodextrin Packaging Films for Food Containing Azolla pinnata Leaves Extract as Natural Antioxidant. J Polym Environ 30, 1355–1365 (2022). https://doi.org/10.1007/s10924-021-02287-z

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10924-021-02287-z

Keywords

Navigation