Skip to main content
Log in

Integrated Treatment of Mining Dam Wastewater with Quaternized Chitosan and PAN/HPMC/AgNo3 Nanostructured Hydrophylic Membranes

  • Review
  • Published:
Journal of Polymers and the Environment Aims and scope Submit manuscript

Abstract

This study was developed a novel nanostructured membrane by electrospinning process, from polyacrylonitrile (PAN) modify by hydroxypropyl methylcellulose (HPMC) polymers containing silver nitrite (AgNO3), to be used as a filter in an integrated wastewater dam treatment process to reuse it as drinking water. Different formulations (108 samples) were electrospun from PAN and (0, 5, 10 w%) HPMC and (0, 0.5, 1 w%) solutions to selected a more efficient formulation in water disinfection and higher hydrophilic character of the membrane to flow performance in the wastewater treatment. The PAN and HPMC phases in membranes were characterize by infrared spectroscopy and thermogravimetric analysis. The nanostructured membranes were characterized by Scanning electron microscopy and the fibers had a diameter between 251 ± 58 and 306 ± 49 nm. The presence of HPMC and AgNO3 in membrane formulation endows superhydrophilicity and permeability increase which up to 21,151 ± 445 L⋅m−2 Permeability h−1. After filtration process with PAN/HPMC/AgNO3, all the tested water potability indexes were achieved. The primary treatment, using quaternized chitosan reduced the turbidity parameter from 19,000 Nephelometric turbidity units (NTU) to 14 NTU, and after filtration with nanostructured membrane, to levels was below 1 NTU and pathogenic potential removed (Total Coliform and Escherichia coli). The results of this study indicated that the hydrophilic nanostructured membranes PAN/10% HPMC/1% AgNO3 have adequate properties to potential wastewater treatment mining for reuse. It’s give a sustainable strategy for managing wastewater which should be reduce the volume of water in the tailing’s dams and contributes to increasing the stability of dams and reducing risks with catastrophic environmental impact.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Armstrong M, Petterd R, Petterd C (2019) Why have so many tailings dams failed in recent years? Resour Policy 63:101–112

    Google Scholar 

  2. Valeriano CM, Neumann R, Alkmim AR, Evangelista H, Heilbron M, Neto CCA, Souza GP (2019) Sm–Nd and Sr isotope fingerprinting of iron mining tailing deposits spilled from the failed SAMARCO Fundão dam 2015 accident at Mariana, SE-Brazil. Appl Geochem 106:34–44

    Article  CAS  Google Scholar 

  3. Dong L, Deng S, Wang F (2020) Some developments and new insights for environmental sustainability and disaster control of tailings dam. J Clean Prod. https://doi.org/10.1016/j.jclepro.2020.122270

    Article  Google Scholar 

  4. Rotta LHS, Alcântara E, Park E, Negri RG, Lin YN, Bernardo N, Mendes TSG, Filho CRS (2020) The 2019 brumadinho tailings dam collapse: possible cause and impacts of the worst human and environmental disaster in Brazil. Int J Appl Earth Obs Geoinf 90:102119

    Article  Google Scholar 

  5. Kunz NC (2016) Catchment-based water management in the mining industry: challenges and solutions. Extract Ind Soc. https://doi.org/10.1016/j.exis.2016.10.012

    Article  Google Scholar 

  6. Hoslett J, Massara TM, Malamis S, Ahmad D, Boogaert IVD, Katsou E, Ahmad B, Ghazal H, Simons S, Wrobel L, Jouhara H (2018) Surface water filtration using granular media and membranes: a review. Sci Total Environ 639:1268–1282

    Article  CAS  Google Scholar 

  7. Grylewicz A, Mozia S (2020) Polymeric mixed-matrix membranes modified with halloysite nanotubes for water and wastewater treatment: a review. Sep Purif Technol. https://doi.org/10.1016/j.seppur.2020.117827

    Article  Google Scholar 

  8. Li C, Ma H, Venkateswaran S, Hsiao BS (2020) Sustainable carboxylated cellulose filters for efficient removal and recovery of lanthanum. Environ Res. https://doi.org/10.1016/j.envres.2020.109685

    Article  PubMed  PubMed Central  Google Scholar 

  9. Kong X, Jinxing Ma J, Le-Clech P, Wang Z, Tang CY, Waite TD (2020) Management of concentrate and waste streams for membrane-based algal separation in water treatment: a review. Water Res 183:115969

    Article  CAS  Google Scholar 

  10. Nataraj SK, Yangb KS, Aminabhavi TM (2012) Polyacrylonitrile-based nanofibers—A state-of-the-art review. Prog Polym Sci 37:487–513

    Article  CAS  Google Scholar 

  11. Cui J, Li F, Wang Y, Zhang Q, Ma W, Huanga C (2020) Electrospun nanofiber membranes for wastewater treatment applications. Sep Purif Technol. https://doi.org/10.1016/j.seppur.2020.117116

    Article  Google Scholar 

  12. Barhouma A, Palc K, Rahierd H, Uludage H, Kimf IS, Bechelany M (2019) Review nanofibers as new-generation materials: from spinning and nano-spinning fabrication techniques to emerging applications. Appl Mater Today 17:1–35

    Article  Google Scholar 

  13. Chen H, Huang M, Liu Y, Meng L, Ma M (2020) Functionalized electrospun nanofiber membranes for water treatment: a review. Sci Total Environ 739:139944

    Article  CAS  Google Scholar 

  14. Kumar TSM, Senthilkumar K, Ratanit M, Rajini N, Chanunpanich N, Hariram N, Pornwongthong P, Siengchin S (2019) Influence of titanium dioxide particles on the filtration of 1,4-dioxane and antibacterial properties of electrospun cellulose acetate and polyvinylidene fluoride nanofibrous membranes. J Polym Environ. https://doi.org/10.1007/s10924-020-01919-0

    Article  Google Scholar 

  15. Wang X, Pan S, Zhang M, Qi J, Sun X, Gu C, Wang L, Li J (2019) Modified hydrous zirconium oxide/PAN nanofibers for efficient defluoridation from groundwater. Sci Total Environ 685:401–409

    Article  CAS  Google Scholar 

  16. Pereao O, Bode-Aluko C, Laatikainen K, Nechaev A (2019) Morphology, modification and characterisation of electrospun polymer nanofiber adsorbent material used in metal ion removal. J Polym Environ 27:1843–1860. https://doi.org/10.1007/s10924-019-01497-w

    Article  CAS  Google Scholar 

  17. Jankowska K, Zdarta J, Grzywaczyk A, Kijeńska-Gawrońska E, Biadasz A, Jesionowski T (2020) Electrospun poly (methyl methacrylate)/polyaniline fibres as a support for laccase immobilisation and use in dye decolourisation. Environ Res 184:109332

    Article  CAS  Google Scholar 

  18. Wang Y, Qu Q, Gao S, Tang G, Liu K, He S, Huang C (2019) Biomass derived carbon as binder-free electrode materials for supercapacitors. Carbon 155:706–726

    Article  CAS  Google Scholar 

  19. Fane AG, Tang CY, Wang R (2006) Membrane technology for water: microfiltration, ultrafiltration, nanofiltration, and reverse osmosis. Elsevier B.V.

  20. Zhu Y, Chen D (2017) Preparation and characterization of attapulgite-based nanofibrous membranes. Mater Des 113:60–67

    Article  CAS  Google Scholar 

  21. Bortolassi ACC, Guerra VG, Aguiar ML, Soussan L, Cornu D, Miele P, Bechelany M (2019) Composites based on nanoparticle and pan electrospun nanofiber membranes for air filtration and bacterial removal. Nanomaterials 9:1740. https://doi.org/10.3390/nano9121740

    Article  CAS  Google Scholar 

  22. Paul M, Jons SD (2016) Chemistry and fabrication of polymeric nanofiltration membranes: a review. Polymer. https://doi.org/10.1016/j.polymer.2016.07.085

    Article  Google Scholar 

  23. Wei DW, Wei H, Gauthier AC, Song J, Jin Y, Huining Xiao H (2020) Superhydrophobic modification of cellulose and cotton textiles: methodologies and applications. J Bioresour Bioprod. https://doi.org/10.1016/j.jobab.2020.03.001

    Article  Google Scholar 

  24. Alharbi AR, Alarifi IM, Asmatulu KWS (2016) Highly hydrophilic electrospun polyacrylonitrile/ polyvinypyrrolidone nanofibers incorporated with gentamicin as filter medium for dam water and wastewater treatment. J Memb Separ Technol 5:38–56

    Article  CAS  Google Scholar 

  25. Almuhamed S, Bonne M, Khenoussi N, Brendle J, Schacher L, Lebeau B, Adolphe DC (2015) Electrospinning composite nanofibers of polyacrylonitrile/synthetic Na-montmorillonite. J Ind Eng Chem 35(25):146–152. https://doi.org/10.1016/j.jiec.2015.12.024

    Article  CAS  Google Scholar 

  26. Topuz F, Abdulhamid MA, Holtzl T, Szekely G (2021) Nanofiber engineering of microporous polyimides through electrospinning: influence of electrospinning parameters and salt addition. Mater Design 198:109280

    Article  CAS  Google Scholar 

  27. Ma X, Kolla P, Yang R, Wang Z, Zhao Y, Smirnova AL, Fonga H (2017) Electrospun polyacrylonitrile nanofibrous membranes with varied fiber diameters and different membrane porosities as lithium-ion battery separators. Electrochim Acta 236:417–423

    Article  CAS  Google Scholar 

  28. Sundaran PS, Reshmi CR, Sagitha P, Manaf O, Sujith A (2019) Multifunctional graphene oxide loaded nanofibrous membrane for removal of dyes and coliform from water. J Environ Manage 240:494–503

    Article  CAS  Google Scholar 

  29. Bigogno RG, Sanchez RJR, Abreu MF (2018) Quaternized chitosan for ecological treatment of bauxite mining effluents. J Polym Environ 26:4169–4175

    Article  CAS  Google Scholar 

  30. Cui J, Lu T, Li F, Wang Y, Lei J, Ma W, Zou Y, Huang C (2021) Flexible and transparent composite nanofiber membrane that was fabricated via a ‘‘green” electrospinning method for efficient particulate matter 2.5 capture. J Colloid Interface Sci 582:506–514

    Article  CAS  Google Scholar 

  31. Beachley V, Wen X (2009) Effect of electrospinning parameters on the nanofiber diameter and length, materials science and engineering. Mater Biol Appl 3:663–668

    Google Scholar 

  32. Wang N, Si Y, Wang N, Sun G, El-Newehy M, Al-Deyab SS, Ding B (2014) Multilevel structured polyacrylonitrile/silica nanofibrous membranes for high-performance air filtration. Sep Purif Technol 126:44–51

    Article  CAS  Google Scholar 

  33. Karbownik I, Rac-Rumijowska O, Fiedot-Toboła M, Rybicki T, Teterycz H (2019) The preparation and characterization of polyacrylonitrile-polyaniline (PAN/PANI) fibers. Materials 12:664. https://doi.org/10.3390/ma12040664

    Article  CAS  PubMed Central  Google Scholar 

  34. Bortolassi ACC, Nagarajan S, Lima BA, Guerra VG, Aguiar ML, Huon V, Soussan L, Cornu D, Miele P, Bechelany M (2019) Efficient nanoparticles removal and bactericidal action of electrospun nanofibers membranes for air filtration. Mater Sci Eng C 102:718–729

    Article  CAS  Google Scholar 

  35. Rehan M, Nada AA, Khattab TA, Abdelwahed NAM, El-Kheir AAA (2020) Development of multifunctional polyacrylonitrile/silver nanocomposite films: antimicrobial activity, catalytic activity, electrical conductivity, UV protection and SERS-active sensor. J Mater Res Technol. https://doi.org/10.1016/j.jmrt.2020.05.079

    Article  Google Scholar 

  36. Thompson AK, Hackett C, Grady TL, Enyinnia S, Moore QC, Nave FM (2020) Development and characterization of membranes with PVA containing silver particles: a study of the addition and stability. Polymers. https://doi.org/10.3390/polym12091937

    Article  PubMed  PubMed Central  Google Scholar 

  37. Shen X, Yu D, Zhang X, White CB, Zhu L (2011) Preparation and characterization of TAM-loaded HPMC/PAN composite fibers for improving drug-release profiles. J Biomater Sci Polym Ed 22(16):2227–2240. https://doi.org/10.1163/092050610X538182

    Article  CAS  PubMed  Google Scholar 

  38. Ke H, Wei Q (2019) Determining influences of silver nanoparticles on morphology and thermal properties of electrospun polyacrylonitrile-based form-stable phase change composite fibrous membranes loading fatty acid ester/eutectics. Thermochim Acta 671:10–16

    Article  CAS  Google Scholar 

  39. Sun F, Ren HT, Li TT, Huang SY, Zhang Y, Wen Lou CW, Lin JH (2020) Bioinspired design of underwater superoleophobic Poly (N-isopropylacrylamide)/polyacrylonitrile/TiO2 nanofibrous membranes for highly efficient oil/water separation and photocatalysis. Environ Res 186:109494

    Article  CAS  Google Scholar 

  40. Roche R, Yalcinkaya F (2019) Electrospun polyacrylonitrile nanofibrous membranes for point-of-use water and air cleaning. Chem Open 8:97–103. https://doi.org/10.1002/open.201800267

    Article  CAS  Google Scholar 

  41. Moradi G, Zinadini S (2018) Polycitrate-para-aminobenzoate alumoxane nanoparticles as a novel nanofiller for enhancement performance of electrospun PAN membranes. Sep Purif Technol. https://doi.org/10.1016/j.seppur.2018.12.037

    Article  Google Scholar 

  42. Moradi G, Zinadini S, Rajabi L, Dadari S (2017) Fabrication of high flux and antifouling mixed matrix fumarate-alumoxane/PAN membranes via electrospinning for application in membrane bioreactors. Appl Surf Sci. https://doi.org/10.1016/j.apsusc.2017.09.039

    Article  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge the CBA/Votorantim, Membrane Separation Processes Laboratory - COPPE/UFRJ, Electron Microscopy Platform Rudolf Barth - FIOCRUZ for technical collaboration, FAPERJ (E-26/201.592/2014) and CNPq (310108/2017-9) for financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rodrigo Gonçalves Bigogno.

Ethics declarations

Conflict of interest

The authors declares that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (TIF 329 kb)

Supplementary file2 (DOCX 27 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bigogno, R.G., Dias, M.L., Manhães, M.B.N. et al. Integrated Treatment of Mining Dam Wastewater with Quaternized Chitosan and PAN/HPMC/AgNo3 Nanostructured Hydrophylic Membranes. J Polym Environ 30, 1228–1243 (2022). https://doi.org/10.1007/s10924-021-02273-5

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10924-021-02273-5

Keywords

Navigation