Skip to main content
Log in

Polymer Blended Deproteinized Natural Rubber Reservoirs for Nicotine Transdermal Patches: In vitro Drug Release, Permeation Study, and Stability Test

  • Original Paper
  • Published:
Journal of Polymers and the Environment Aims and scope Submit manuscript

Abstract

The objective of this research was to prepare reservoir-type nicotine transdermal patches (R-NTPs) using deproteinized natural rubber latex (DNRL) blends as the release control layer (RCL). Hydrophobic DNRL was blended with either hydrophilic hydroxypropylmethylcellulose or polyvinyl alcohol polymer, and either glycerin or dibutylphthalate as plasticizer, and the RCLs were made by plating technique. These RCLs were more hydrophilic compared to the original DNRL film. Nicotine was filled into the reservoir compartment between commercial backing layer and DNRL blended RCL, and was then heat sealed to ensure there was no leak from the R-NTPs. In vitro release and permeation studies of nicotine from the R-NTPs, drug stability, and irritation of the R-NTP devices were evaluated. DNRL blends provided a suitable controlled release and permeation rate for R-NTPs. The release and permeation rates of nicotine from the R-NTPs depended on types of polymer and plasticizer blends that increased the hydrophilicity of DNRL. The addition of an adhesive layer slightly decreased the nicotine release and permeation rates. The release and permeation behaviors of nicotine were described by first and zero order kinetics, respectively. Furthermore, these R-NTPs were stable when stored in a tight container for up to 90 d, and safe to apply to the skin without producing any irritation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Prodduturi S, Smith GJ, Wokovich AM, Doub WH, Westenberger BJ, Buhse L (2009) Reservoir based fentanyl transdermal drug delivery systems: effect of patch age on drug release and skin permeation. Pharm Res 26:1344–1352. https://doi.org/10.1007/s11095-009-9843-0

    Article  CAS  PubMed  Google Scholar 

  2. Assaf SM, Sallam ASA, Ghanem AM (2019) Design and evaluation of transdermal delivery system containing tamsulosin hydrochloride. J Drug Deliv Sci Technol 51:524–534. https://doi.org/10.1016/j.jddst.2019.03.023

    Article  CAS  Google Scholar 

  3. Farrell S, Sirkar KK (1997) A reservoir-type controlled release device using aqueous-organic partitioning and a porous membrane. J Membr Sci 130:265–274. https://doi.org/10.1016/S0376-7388(96)00343-2

    Article  CAS  Google Scholar 

  4. Babu RJ, Pandit JK (2005) Effect of penetration enhancers on the release and skin permeation of bupranolol from reservoir-type transdermal delivery systems. Int J Pharm 288:325–334. https://doi.org/10.1016/j.ijpharm.2004.10.008

    Article  CAS  PubMed  Google Scholar 

  5. Fan Q, Sirkar KK, Wu J (2009) A thermo-sensitive release system based on polymeric membrane for transdermal delivery of doxycycline HCl. J Membr Sci 337:175–181. https://doi.org/10.1016/j.memsci.2009.03.032

    Article  CAS  Google Scholar 

  6. Wolff HM (2000) Optimal process design for the manufacture of transdermal drug delivery systems. Pharm Sci Technol Today 3:173–181. https://doi.org/10.1016/S1461-5347(00)00251-0

    Article  CAS  PubMed  Google Scholar 

  7. Phinyocheep P (2014) In: Kohjiya S, Ikeda Y (eds) Chemistry, manufacture and applications of natural rubber. Woodhead Publishing, Sawston, pp 68–118. https://doi.org/10.1016/S1461-5347(00)00251-0

  8. Prabhakaran Nair KP (2010) In: Prabhakaran Nair KP (ed) The agronomy and economy of important tree crops of the developing world. Elsevier, London, pp 237–273. https://doi.org/10.1016/C2010-0-64818-8

  9. Nakason C, Kaesaman A, Eardrod K (2005) Cure and mechanical properties of natural rubber-g-poly(methyl methacrylate)-cassava starch compounds. Mater Lett 59:4020–4025. https://doi.org/10.1016/j.matlet.2005.07.057

    Article  CAS  Google Scholar 

  10. Ochigbo SS, Luyt AS, Focke WW (2009) Latex derived blends of poly(vinyl acetate) and natural rubber: Thermal and mechanical properties. J Mater Sci 44:3248–3254. https://doi.org/10.1007/s10853-009-3435-6

    Article  CAS  Google Scholar 

  11. Pichayakorn W, Suksaeree J, Boonme P, Taweepreda W, Ritthidej GC (2012) Preparation of deproteinized natural rubber latex and properties of films formed by itself and several adhesive polymer blends. Ind Eng Chem Res 51:13393–13404. https://doi.org/10.1021/ie301985y

    Article  CAS  Google Scholar 

  12. Guerra NB, Sant’Ana Pegorin G, Boratto MH, de Barros NR, de Oliveira Graeff CF, Herculano RD (2021) Biomedical applications of natural rubber latex from the rubber tree Hevea brasiliensis. Mater Sci Eng C 126:112126. https://doi.org/10.1016/j.msec.2021.112126

    Article  CAS  Google Scholar 

  13. Pichayakorn W, Boonme P, Taweepreda W (2013) Preparation of peel-off mask from deproteinized natural rubber latex. Adv Mater Res 747:95–98. https://doi.org/10.4028/www.scientific.net/AMR.747.95

    Article  CAS  Google Scholar 

  14. Pichayakorn W, Boonme P, Taweepreda W (2014) Cosmetic pore packs from deproteinized natural rubber latex. Adv Mater Res 844:466–469. https://doi.org/10.4028/www.scientific.net/AMR.844.466

    Article  CAS  Google Scholar 

  15. Herculano RD, Silva CP, Ereno C, Guimaraes SAC, Kinoshita A, de Oliveira Graeff CF (2009) Natural rubber latex used as drug delivery system in guided bone regeneration (GBR). Mater Res 12:253–256. https://doi.org/10.1590/S1516-14392009000200023

    Article  CAS  Google Scholar 

  16. Herculano RD, Guimarães SAC, Belmonte GC, Duarte MAH, De Oliveira Júnior ON, Kinoshita A et al (2010) Metronidazole release using natural rubber latex as matrix. Mater Res 13:57–61. https://doi.org/10.1590/S1516-14392010000100013

    Article  CAS  Google Scholar 

  17. Herculano RD, Alencar De Queiroz AA, Kinoshita A, Oliveira ON Jr, Graeff CFO (2011) On the release of metronidazole from natural rubber latex membranes. Mater Sci Eng C 31:272–275. https://doi.org/10.1016/j.msec.2010.09.007

    Article  CAS  Google Scholar 

  18. Thorngkham P, Paradee N, Niamlang S, Sirivat A (2015) Permeation study of indomethacin from polycarbazole/natural rubber blend film for electric field controlled transdermal delivery. J Pharm Sci 104:1795–1803. https://doi.org/10.1002/jps.24414

    Article  CAS  PubMed  Google Scholar 

  19. Barros NRD, Miranda MCR, Borges FA, Gemeinder JLP, Mendonça RJD, Cilli EM et al (2017) Natural rubber latex: Development and in vitro characterization of a future transdermal patch for enuresis treatment. Int J Polym Mater Polym Biomater 66:871–876. https://doi.org/10.1080/00914037.2017.1280795

    Article  CAS  Google Scholar 

  20. Banpean A, Paradee N, Sirivat A, Niamlang S (2018) Deproteinized natural rubber as an electrically controllable, transdermal drug-delivery patch. J Polym Environ 26:3745–3753. https://doi.org/10.1007/s10924-018-1252-1

    Article  CAS  Google Scholar 

  21. Jayadevan J, Unnikrishnan G (2018) Novel membranes from physico-chemically modified deproteinized natural rubber latex: Development, characterisation and drug permeation. New J Chem 42:14179–14187. https://doi.org/10.1039/c8nj01523f

    Article  CAS  Google Scholar 

  22. Floriano JF, de Barros NR, Cinman JLF, da Silva RG, Loffredo AV, Borges FA et al (2018) Ketoprofen loaded in natural rubber latex transdermal patch for tendinitis treatment. J Polym Environ 26:2281–2289. https://doi.org/10.1007/s10924-017-1127-x

    Article  CAS  Google Scholar 

  23. Morise BT, Chagas ALD, Barros NR, Miranda MCR, Borges FA, Gemeinder JLP et al (2019) Scopolamine loaded in natural rubber latex as a future transdermal patch for sialorrhea treatment. Int J Polym Mater Polym Biomater 68:788–795. https://doi.org/10.1080/00914037.2018.1506984

    Article  CAS  Google Scholar 

  24. Boonme P, Boontawee H, Taweepreda W, Pichayakorn W (2013) Characterization of lidocaine transdermal patches from natural rubber latex. Adv Mater Res 747:103–106. https://doi.org/10.4028/www.scientific.net/AMR.747.103

    Article  CAS  Google Scholar 

  25. Suksaeree J, Sampaopan Y, Pichayakorn W, Kalkornsurapranee E (2019) Preparation and evaluation of mefenamic acid transdermal patches prepared from pressure sensitive adhesive. IOP Conf Ser Mater Sci Eng 686:012015. https://doi.org/10.1088/1757-899X/686/1/012015

    Article  CAS  Google Scholar 

  26. Zancanela DC, Herculano RD, Funari CS, Marcos CM, Almeida AMF, Guastaldi AC (2017) Physical, chemical and antimicrobial implications of the association of propolis with a natural rubber latex membrane. Mater Lett 209:39–42. https://doi.org/10.1016/j.matlet.2017.07.093

    Article  CAS  Google Scholar 

  27. Carvalho FA, Uchina HS, Borges FA, Oyafuso MH, Herculano RD, Gremião MPD et al (2018) Natural membranes of Hevea brasiliensis latex as delivery system for Casearia sylvestris leaf components. Rev Brasileira Farmacognosia 28:102–110. https://doi.org/10.1016/j.bjp.2017.10.007

    Article  CAS  Google Scholar 

  28. Wannaphatchaiyong S, Suksaeree J, Waiprib R, Kaewpuang A, Saelee W, Pichayakorn W (2019) Gelatin/gelatinized sago starch biomembranes as a drug delivery system using rubber latex as plasticizer. J Polym Environ 27:2380–2394. https://doi.org/10.1007/s10924-019-01510-2

    Article  CAS  Google Scholar 

  29. Cesar MB, Borges FA, Bilck AP, Yamashita F, Paulino CG, Herculano RD (2020) Development and characterization of natural rubber latex and polylactic acid membranes for biomedical application. J Polym Environ 28:220–230. https://doi.org/10.1007/s10924-019-01596-8

    Article  CAS  Google Scholar 

  30. Alenius H, Turjanmaa K, Palosuo T (2002) Natural rubber latex allergy. Occup Environ Med 59:419–424. https://doi.org/10.1136/oem.59.6.419

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Suksaeree J, Boonme P, Taweepreda W, Ritthidej GC, Pichayakorn W (2012) Characterization, in vitro release and permeation studies of nicotine transdermal patches prepared from deproteinized natural rubber latex blends. Chem Eng Res Des 90:906–914. https://doi.org/10.1016/j.cherd.2011.11.002

    Article  CAS  Google Scholar 

  32. Boonme P, Taweepreda W, Pichayakorn W (2014) Novel process in preparation of deproteinized natural rubber latex. Adv Mater Res 844:462–465. https://doi.org/10.4028/www.scientific.net/AMR.844.462

    Article  CAS  Google Scholar 

  33. Pichayakorn W, Suksaeree J, Taweepreda W (2014) Improved deproteinization process for protein-free natural rubber latex. Adv Mater Res 844:474–477. https://doi.org/10.4028/www.scientific.net/AMR.844.474

    Article  Google Scholar 

  34. Pichayakorn W, Suksaeree J, Boonme P, Taweepreda W, Amnuaikit T, Ritthidej GC (2013) Deproteinised natural rubber used as a controlling layer membrane in reservoir-type nicotine transdermal patches. Chem Eng Res Des 91:520–529. https://doi.org/10.1016/j.cherd.2012.09.011

    Article  CAS  Google Scholar 

  35. Tirnaksiz F, Yuce Z (2005) Development of transdermal system containing nicotine by using sustained release dosage design. Farmaco 60:763–770. https://doi.org/10.1016/j.farmac.2005.06.004

    Article  CAS  PubMed  Google Scholar 

  36. Yildiz D (2004) Nicotine, its metabolism and an overview of its biological effects. Toxicon 43:619–632. https://doi.org/10.1016/j.toxicon.2004.01.017

    Article  CAS  PubMed  Google Scholar 

  37. Hawkins BT, Abbruscato TJ, Egleton RD, Brown RC, Huber JD, Campos CR et al (2004) Nicotine increases in vivo blood-brain barrier permeability and alters cerebral microvascular tight junction protein distribution. Brain Res 1027:48–58. https://doi.org/10.1016/j.brainres.2004.08.043

    Article  CAS  PubMed  Google Scholar 

  38. Guo Y-g, Pratap Singh A (2019) Emerging strategies for enhancing buccal and sublingual administration of nutraceuticals and pharamaceuticals. J Drug Deliv Sci Technol 52:440–451. https://doi.org/10.1016/j.jddst.2019.05.014

    Article  CAS  Google Scholar 

  39. Gore AV, Chien YW (1998) The nicotine transdermal system. Clin Dermatol 16:599–615. https://doi.org/10.1016/S0738-081X(98)00046-7

    Article  CAS  PubMed  Google Scholar 

  40. Pichayakorn W, Suksaeree J, Boonme P, Amnuaikit T, Taweepreda W, Ritthidej GC (2012) Nicotine transdermal patches using polymeric natural rubber as the matrix controlling system: Effect of polymer and plasticizer blends. J Membr Sci 411–412:81–90. https://doi.org/10.1016/j.memsci.2012.04.017

    Article  CAS  Google Scholar 

  41. Pichayakorn W, Suksaeree J, Boonme P, Amnuaikit T, Taweepreda W, Ritthidej GC (2012) Deproteinized natural rubber latex/hydroxypropylmethyl cellulose blending polymers for nicotine matrix films. Ind Eng Chem Res 51:8442–8452. https://doi.org/10.1021/ie300608j

    Article  CAS  Google Scholar 

  42. Pichayakorn W, Suksaeree J, Boonme P, Amnuaikit T, Taweepreda W, Ritthidej GC (2013) Deproteinized natural rubber film forming polymeric solutions for nicotine transdermal delivery. Pharm Dev Technol 18:1111–1121. https://doi.org/10.3109/10837450.2012.705297

    Article  CAS  PubMed  Google Scholar 

  43. Pichayakorn W, Suksaeree J, Boonme P, Taweepreda W, Amnuaikit T, Ritthidej GC (2015) Transdermal nicotine mixed natural rubber-hydroxypropylmethylcellulose film forming systems for smoking cessation: In vitro evaluations. Pharm Dev Technol 20:966–975. https://doi.org/10.3109/10837450.2014.954725

    Article  CAS  PubMed  Google Scholar 

  44. Suksaeree J, Pichayakorn W, Monton C, Sakunpak A, Chusut T, Saingam W (2014) Rubber polymers for transdermal drug delivery systems. Ind Eng Chem Res 53:507–513. https://doi.org/10.1021/ie403619b

    Article  CAS  Google Scholar 

  45. Chinpa W (2008) Preparation and characterization of an asymmetric porous poly (vinyl chloride) / poly (methyl methacrylate-co-methacrylic acid) membrane. ScienceAsia 34:385–389. https://doi.org/10.2306/scienceasia1513-1874.2008.34.385

    Article  CAS  Google Scholar 

  46. Ye SH, Watanabe J, Iwasaki Y, Ishihara K (2003) Antifouling blood purification membrane composed of cellulose acetate and phospholipid polymer. Biomaterials 24:4143–4152. https://doi.org/10.1016/S0142-9612(03)00296-5

    Article  CAS  PubMed  Google Scholar 

  47. Chen Z, Deng M, Chen Y, He G, Wu M, Wang J (2004) Preparation and performance of cellulose acetate/polyethyleneimine blend microfiltration membranes and their applications. J Membr Sci 235:73–86. https://doi.org/10.1016/j.memsci.2004.01.024

    Article  CAS  Google Scholar 

  48. Bhongsuwan D (2008) Preparation of cellulose acetate membranes for ultra-nano-filtrations. Agric Nat Resour 42:311–317

    Google Scholar 

  49. Zheng QZ, Wang P, Yang YN, Cui DJ (2006) The relationship between porosity and kinetics parameter of membrane formation in PSF ultrafiltration membrane. J Membr Sci 286:7–11. https://doi.org/10.1016/j.memsci.2006.09.033

    Article  CAS  Google Scholar 

  50. Pongjanyakul T, Prakongpan S, Priprem A (2003) Acrylic matrix type nicotine transdermal patches: In vitro evaluations and batch-to-batch uniformity. Drug Dev Ind Pharm 29:843–853. https://doi.org/10.1081/DDC-120024180

    Article  CAS  PubMed  Google Scholar 

  51. Costa P, Sousa Lobo JM (2001) Modeling and comparison of dissolution profiles. Eur J Pharm Sci 13:123–133. https://doi.org/10.1016/S0928-0987(01)00095-1

    Article  CAS  PubMed  Google Scholar 

  52. Taghizadeh SM, Soroushnia A, Mohamadnia F (2010) Preparation and in vitro evaluation of a new fentanyl patch based on functional and non-functional pressure sensitive adhesives. AAPS PharmSciTech 11:278–284. https://doi.org/10.1208/s12249-009-9366-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Draize JH, Woodard G, Calvery HO (1944) Method for the study of Irritation and toxicity of substance applied topically to the skin and mucous membrane. J Pharmacol Exp Ther 82:377–390. https://doi.org/http://jpet.aspetjournals.org/content/82/3/377.abstract

    CAS  Google Scholar 

  54. Minghetti Y, Cilurzo F, Tosi L, Casiraghi A, Montanari L (2003) Design of a new water-soluble pressure-sensitive adhesive for patch preparation. AAPS PharmSciTech 4:53–61. https://doi.org/10.1208/pt040108

    Article  CAS  PubMed Central  Google Scholar 

  55. Suksaeree J, Boonme P, Taweepreda W, Ritthidej GC, Pichayakorn W (2012) Relationships between hydraulic permeability and porosity of natural rubber blended films. Isan J Pharm Sci 8:89–95

    Google Scholar 

  56. Gullinkala T, Digman B, Gorey C, Hausman R, Escobar IC (2010) In: Escobar IC, Schäfer AI (eds) Sustainability science and engineering. Elsevier, Amsterdam, pp 65–93. https://doi.org/10.1016/S1871-2711(09)00204-9

    Chapter  Google Scholar 

  57. Fadnis C, Illiger SR, Rao KP, Demappa T (2008) Miscibility studies of HPMC/PVA blends in water by viscosity, density, refractive index and ultrasonic velocity method. Carbohydr Polym 74:779–782. https://doi.org/10.1016/j.carbpol.2008.04.036

    Article  CAS  Google Scholar 

  58. Ammar HO, Ghorab M, El-Nahhas SA, Kamel R (2009) Polymeric matrix system for prolonged delivery of tramadol hydrochloride, part I: Physicochemical evaluation. AAPS PharmSciTech 10:7–20. https://doi.org/10.1208/s12249-008-9167-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Thein-Han WW, Stevens WF (2004) Transdermal delivery controlled by a chitosan membrane. Drug Dev Ind Pharm 30:397–404. https://doi.org/10.1081/DDC-120030934

    Article  CAS  PubMed  Google Scholar 

  60. Kavanagh N, Corrigan OI (2004) Swelling and erosion properties of hydroxypropylmethylcellulose (Hypromellose) matrices—influence of agitation rate and dissolution medium composition. Int J Pharm 279:141–152. https://doi.org/10.1016/j.ijpharm.2004.04.016

    Article  CAS  PubMed  Google Scholar 

  61. Jamzad S, Tutunji L, Fassihi R (2005) Analysis of macromolecular changes and drug release from hydrophilic matrix systems. Int J Pharm 292:75–85. https://doi.org/10.1016/j.ijpharm.2004.11.011

    Article  CAS  PubMed  Google Scholar 

  62. Fang JY, Chen SS, Huang YB, Wu PC, Tsai YH (1999) In vitro study of transdermal nicotine delivery: Influence of rate- controlling membranes and adhesives. Drug Dev Ind Pharm 25:789–794. https://doi.org/10.1081/DDC-100102239

    Article  CAS  PubMed  Google Scholar 

  63. Krishnaiah YSR, Satyanarayana V, Bhaskar P (2003) Influence of menthol and pressure-sensitive adhesives on the in vivo performance of membrane-moderated transdermal therapeutic system of nicardipine hydrochloride in human volunteers. Eur J Pharm Biopharm 55:329–337. https://doi.org/10.1016/S0939-6411(03)00027-4

    Article  CAS  PubMed  Google Scholar 

  64. Osborne JL, Sanchez IC, Paul DR (2013) An asymptotic analysis of drug delivery from transdermal patches. J Membr Sci 442:27–30. https://doi.org/10.1016/j.memsci.2013.03.051

    Article  CAS  Google Scholar 

  65. Roberts MS, Walters KA (2008) In: Roberts MS, Walters KA (eds) Dermal absorption and toxicity assessment. Informa Healthcare, USA, pp 1–16. https://doi.org/10.3109/9780849375927

    Chapter  Google Scholar 

  66. Simon GA, Maibach HI (2000) The pig as an experimental animal model of percutaneous permeation in man: Qualitative and quantitative observations – An overview. Skin Pharmacol Physio 13:229–234. https://doi.org/10.1159/000029928

    Article  CAS  Google Scholar 

  67. Lee A-RC, Moon HK (2007) Gravimetric analysis and differential scanning calorimetric studies on glycerin-induced skin hydration. Arch Pharm Res 30:1489–1495. https://doi.org/10.1007/BF02977376

    Article  CAS  PubMed  Google Scholar 

  68. Golomb G, Fisher P, Rahamim E (1990) The relationship between drug release rate, particle size and swelling of silicone matrices. J Controlled Release 12:121–132. https://doi.org/10.1016/0168-3659(90)90088-B

    Article  CAS  Google Scholar 

  69. Limpongsa E, Umprayn K (2008) Preparation and evaluation of diltiazem hydrochloride diffusion-controlled transdermal delivery system. AAPS PharmSciTech 9:464–470. https://doi.org/10.1208/s12249-008-9062-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors would like to acknowledge the Prince of Songkla University and the Thailand Research Fund (Grant No. RDG5350064) for financial supports. We also thank the Siam Chemical Industry and the 3 M Company for some material supports. Thanks also to Dr. Brian Hodgson for assistance with the English.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wiwat Pichayakorn.

Ethics declarations

Conflict of interest

The authors report no conflicts of interest. The authors alone are responsible for the content and writing of this article.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pichayakorn, W., Suksaeree, J., Taweepreda, W. et al. Polymer Blended Deproteinized Natural Rubber Reservoirs for Nicotine Transdermal Patches: In vitro Drug Release, Permeation Study, and Stability Test. J Polym Environ 30, 988–1000 (2022). https://doi.org/10.1007/s10924-021-02251-x

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10924-021-02251-x

Keywords

Navigation