Skip to main content
Log in

Carboxylated Cellulose for Adsorption of Hg(II) Ions from Contaminated Water: Isotherms and Kinetics

  • Original Paper
  • Published:
Journal of Polymers and the Environment Aims and scope Submit manuscript

Abstract

Microcrystalline cellulose (MCC) was modified with 1, 2, 3, 4-butanetetracarboxylic acid (BTCA) to obtain the adsorbent material named treated microcrystalline cellulose (TMCC), which was characterized for point of zero charge (pHZPC), estimation of carboxyl group content and surface group moieties, surface morphology and textural properties. Application of TMCC for the removal of Hg(II) ions from aqueous solution was studied with respect to carboxyl group content, and process parameters, including adsorbent dose, initial solution pH, temperature, contact time, and Hg(II) ion concentration, to provide information about the adsorption mechanism. Isothermal adsorption data were analysed using a range of two and three parameter adsorption models, with the level of fit determined using nonlinear regression analysis. The maximum adsorption capacity under optimised conditions was determined using Langmuir analysis and found to be 1140 mg/g, and Freundlich analysis showed that adsorption of Hg(II) ions onto TMCC is favourable. The kinetic results using a range of models, showed that a pseudo-second order kinetic model was most appropriate for the data obtained, which indicates that the process involves chemisorption. The results obtained show TMCC to have a high affinity for Hg(II) ions from aqueous media, which suggests that these materials may have potential for application in water treatment systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Scheme 2

Similar content being viewed by others

References

  1. Hokkanen S, Bhatnagar A, Sillanpaa M (2016) A review on modification methods to cellulose-based adsorbents to improve adsorption capacity. Water Res 91:156–173

    Article  CAS  PubMed  Google Scholar 

  2. Gusain D, Srivastava V, Sharma YC (2014) Kinetic and thermodynamic studies on the removal of Cu(II) ions from aqueous solutions by adsorption on modified sand. J Ind Eng Chem 20(3):841–847

    Article  CAS  Google Scholar 

  3. Falayi T, Ntuli F (2014) Removal of heavy metals and neutralisation of acid mine drainage with un-activated attapulgite. J Ind Eng Chem 20(4):1285–1292

    Article  CAS  Google Scholar 

  4. Janin A, Blais JF, Mercier G, Drogui P (2009) Selective recovery of Cr and Cu in leachatefrom chromate copper arsenate treated wood using chelating and acidic ion exchange resins. J Hazard Mater 169(1–3):1099–1105

    Article  CAS  PubMed  Google Scholar 

  5. Bratskaya SY, Pestov AV, Yatluk YG, Avramenko VA (2009) Heavy metals removal by flocculation/precipitation using N-(2-carboxyethyl) chitosans. Colloids Surf A 339(1–3):140–144

    Article  CAS  Google Scholar 

  6. Tran TK, Leu HJ, Chiu KF, Lin CY (2017) Electrochemical treatment of heavy metal containing wastewater with the removal of COD and heavy metal ions. J Chin Chem Soc 64(5):493–502

    Article  CAS  Google Scholar 

  7. Canet L, Ilpide M, Seta P (2002) Efficient facilitated transport of lead, cadmium, zinc, and silver across a flat-sheet-supported liquid membrane mediated by lasalocid A. Sep Sci Technol 37(8):1851–1860

    Article  CAS  Google Scholar 

  8. Fenglian F, Qi W (2011) Removal of heavy metal ions from wastewaters: a review. J Environ Manage 92:407–418

    Article  CAS  Google Scholar 

  9. Godwin PM, Pan Y, Xiao H, Afzal MT (2019) Progress in preparation and application of modified biochar for improving heavy metal ion removal from wastewater. J Bioresour Bioprod 4:31–42

    Article  CAS  Google Scholar 

  10. Dong Z, Yuan W, Lib Y, Hua R, Zhao L (2019) Radiation synthesis of crown ether functionalized microcrystalline cellulose as bifunctional adsorbent: a preliminary investigation on its application for removal of ReO4- as analogue for TcO4-. Radiat Phys Chem 159:147–153

    Article  CAS  Google Scholar 

  11. Wojnarovits L, Foldvary CM, Takacs E (2010) Radiation-induced grafting of cellulose for adsorption of hazardous water pollutants: a review. Radiat Phys Chem 79(8):848–862

    Article  CAS  Google Scholar 

  12. Barsbay M, Güven O (2019) Surface modification of cellulose via conventional and controlled radiation induced grafting. Radiat Phys Chem 160:1–8

    Article  CAS  Google Scholar 

  13. Boparai HK, Joseph M, O’Carroll DM (2011) Kinetics and thermodynamics of cadmium ion removal by adsorption onto nano zero valent iron particles. J Hazard Mater 186:458–465

    Article  CAS  PubMed  Google Scholar 

  14. Qi L, Teng F, Deng X, Zhang Y, Zhong X (2019) Experimental study on adsorption of Hg(II) with microwave-assisted alkali modified fly ash. Powder Technol 351:153–158

    Article  CAS  Google Scholar 

  15. Fu Y, Jiang J, Chen Z, Ying S, Wang J, Hu J (2019) Rapid and selective removal of Hg(II) ions and high catalytic performance of the spent adsorbent based on functionalized mesoporous silica/ poly (m-aminothiophenol) nanocomposite. J Mol Liq 286:110746

    Article  CAS  Google Scholar 

  16. Saman N, Kong H, Mohtar SS, Johari K, Mansor AF, Hassan O, Ali N, Mat H (2019) A comparative study on dynamic Hg(II) and MeHg(II) removal by functionalized agrowaste adsorbent: breakthrough analysis and adsorber design. Korean J Chem Eng 36:1069–1081

    Article  CAS  Google Scholar 

  17. Zhang Y, Wang B, Cheng Q, Li X, Li Z (2020) Removal of toxic heavy metal ions (Pb, Cr, Cu, Ni, Zn Co, Hg, and Cd) from waste batteries or lithium cells using nanosized metal oxides: a review. J Nanosci Nanotechnol 20:7231–7254

    Article  CAS  PubMed  Google Scholar 

  18. Khalil M, Hashem A, Hebeish A (1990) Carboxymethylation of Maize Starch. Starch/Stärke 42:60–63

    Article  CAS  Google Scholar 

  19. Kapoor A, Yang RT (1989) Correlation of equilibrium adsorption data of condensable vapours on porous adsorbents. Gas Sep Purif 3:187–192

    Article  CAS  Google Scholar 

  20. Rangabhashiyam S, Anu N, Nandagopal M (2014) Relevance of isotherm models in biosorption of pollutants by agricultural by products. J Env Chem Eng 2(1):398–414

    Article  CAS  Google Scholar 

  21. Kumar KV, Sivanesan S (2006) Pseudo second order kinetics and pseudo isotherms for malachite green onto activated carbon: comparison of linear and nonlinear regression methods. J Hazard Mater B 136:721–726

    Article  CAS  Google Scholar 

  22. Ng JCY, Cheung WH, McKay G (2002) Equilibrium studies of the sorption of Cu(II) ions onto chitosan. J Colloid Interface Sci 255:64–74

    Article  CAS  PubMed  Google Scholar 

  23. Marquardt DW (1963) An algorithm for least-squares estimation of nonlinear parameters. J Soc Ind Appl Math 11:431–441

    Article  Google Scholar 

  24. Boulinguiez B, Le Cloirec P, Wolbert D (2008) Revisiting the determination of Langmuir parameters application to tetrahydrothiophene adsorption onto activated carbon. Langmuir 24:6420–6424

    Article  CAS  PubMed  Google Scholar 

  25. Vijayaraghavan K, Padmesh TVN, Palanivelu K, Velan M (2006) Biosorption of nickel(II) ions onto Sargassum wightii: application of two-parameterand three-parameter isotherm models. J Hazard Mater 133:304–308

    Article  CAS  PubMed  Google Scholar 

  26. Ahsan HM, Zhang X, Li Y, Li B, Liu S (2019) Surface modification of microcrystalline cellulose: physicochemical characterization and applications in the stabilization of pickering emulsions. Int J Biol Macromol 132:1176–1184

    Article  CAS  PubMed  Google Scholar 

  27. Shi C, Tao F, Cui Y (2018) Evaluation of nitriloacetic acid modified cellulose film on adsorption of methylene blue. Int J Biol Macromol 114:400–407

    Article  CAS  PubMed  Google Scholar 

  28. Kong S, Huang X, Liand K, Song X (2019) Adsorption/desorption isotherms of CH4 and C2H6 on typical shale samples. Fuel 255:115632

    Article  CAS  Google Scholar 

  29. Hamdaoui O (2006) Batch study of liquid-phase adsorption of methylene blue using cedar sawdust and crushed brick. J Hazard Mater 135:264–273

    Article  CAS  PubMed  Google Scholar 

  30. Ngah WWL, Teong R, Toh M (2012) Utilization of chitosan–zeolite composite in the removal of Cu(II) from aqueous solution: adsorption, desorption and fixed bed column studies. Chem Eng J 209:46–53

    Article  CAS  Google Scholar 

  31. Martín-Lara M, Hernáinz F, Calero M, Blázquez G, Tenorio G (2009) Surface chemistry evaluation of some solid wastes from olive-oil industry used for lead removal from aqueous solutions. Biochem Eng J 44:151–159

    Article  CAS  Google Scholar 

  32. Chen HY, Zhao A (2007) Removal of Cu(II) from aqueous solution by adsorption onto acid-activated palygorskite. J Hazard Mater 149:346–354

    Article  CAS  PubMed  Google Scholar 

  33. Khalil AA, Sokker HH, Al-Anwar A, Abd El-Zaher A, Hashem A (2009) Preparation, characterization and utilization of amidoximated poly(AN/MAA)-grafted alhagi residues for the removal of Zn(II) ions from aqueous solution. Adsorp Sci Technol 27:363–382

    Article  CAS  Google Scholar 

  34. Langmuir I (1916) The constitution and fundamental properties of solids and liquids. Part I. Solids. J Am Chem Soc 38:2221–2295

    Article  CAS  Google Scholar 

  35. Freundlich H (1907) Über die adsorption in lösungen Zeitschrift für physikalische. Chemie 57:385–470

    CAS  Google Scholar 

  36. Temkin M (1940) Kinetics of ammonia synthesis on promoted iron catalysts Acta Physiochim. URSS 12:327–356

    CAS  Google Scholar 

  37. Dubinin MM (1965) Modern state of the theory of volume filling of micropore adsorbents during adsorption of gases and steams on carbon adsorbents. Zh Fiz Khim 39:1305–1317

    CAS  Google Scholar 

  38. Redlich O, Peterson DL (1959) A useful adsorption isotherm. J Phys Chem 63:1024–1026

    Article  CAS  Google Scholar 

  39. Toth J (1971) State equations of the solid gas interface layer. Acta Chem Acad Hung 69:311–317

    CAS  Google Scholar 

  40. Sips R (1948) Combined form of Langmuir and Freundlich equations. J Chem Phys 16:490–495

    Article  CAS  Google Scholar 

  41. Foo KY, Hameed BH (2010) Insights into the modeling ofadsorption isotherm systems. Chem Eng J 156:2–10

    Article  CAS  Google Scholar 

  42. Lagergren SK (1898) About the theory of so-called adsorption of soluble substances. Sven Vetensk Handingarl 24:1–39

    Google Scholar 

  43. Ho Y-S, McKay G (1999) Pseudo-second order model for sorption processes. Process Biochem 34:451–465

    Article  CAS  Google Scholar 

  44. Weber WJ, Morris JC (1963) Kinetics of adsorption on carbon from solution. J Sanit Eng Div 89:31–60

    Article  Google Scholar 

  45. Marrakchi F, Ahmed M, Khanday W, Asif M, Hameed B (2017) Mesoporous-activated carbon prepared from chitosan flakes via single-step sodium hydroxide activation for the adsorption of methylene blue. Int J Biol Macromol 98:233–239

    Article  CAS  PubMed  Google Scholar 

  46. Kołodyńska D, Hałas P, Franus M, Hubicki Z (2017) Zeolite properties improvement by chitosan modification—sorption studies. J Ind Eng Chem 52:187–196

    Article  CAS  Google Scholar 

  47. Tutem E, Apak R, Unal CF (1998) Adsorptive removal of chloro phenols from water by bituminous shale. Water Res 32:2315–2324

    Article  CAS  Google Scholar 

  48. Chien SH, Clayton WR (1980) Application of Elovich equation to the kinetics of phosphate release and sorption in soils. Soil Sci Soc Am J 44:265–268

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Hashem.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hashem, A., Mohamed, L.A., Fletcher, A.J. et al. Carboxylated Cellulose for Adsorption of Hg(II) Ions from Contaminated Water: Isotherms and Kinetics. J Polym Environ 29, 3040–3053 (2021). https://doi.org/10.1007/s10924-021-02075-9

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10924-021-02075-9

Keywords

Navigation