Skip to main content
Log in

The Effect of Selenium- or Metal-Nanoparticles Incorporated Nanocomposites of Vinyl Triazole Based Polymers on Fungal Growth and Bactericidal Properties

  • Original Paper
  • Published:
Journal of Polymers and the Environment Aims and scope Submit manuscript

Abstract

Nano(Se, Ag, Au) capped with triazole-based polymers are promising nanomaterials for medicine and technique. Natural biopolymers are capable of exhibiting high efficiency in stabilization of metal/nonmetal nanoparticles. In this work, fungal extracellular polymers were found to contribute positively to the formation of hybrid polymeric element-containing nanocomposites and their biological activity. The impact of Se-, Ag-, or Au- nanocomposites chemically obtained in the matrix of homo- and co-polymer of vinyltriazole, on mushroom cultures with different taxonomic characteristics and growth conditions was studied. Enhanced mycelium growth caused by the nanocomposites implementation in the nutrient media was a prerequisite for making the Se-, Ag- or Au-containing polymeric agents based on the fungal extracellular metabolites. Sixty biopreparations thus obtained were screened for the bactericidal effect. Element-containing biocomposites suppressed the bacterial phytopathogens from the genera Micrococcus, Pectobacterium, Pseudomonas, Xanthomonas. Comparative studies of the chemically-and-biologically synthesized polymeric composites comprising selenium or metal nanoparticles would contribute to scientific foundations of manufacturing and implementing the innovative agents under question.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Wilson P, Ke PC, Davis TP, Kempe K (2017) Eur Polym J 88:486

    Article  CAS  Google Scholar 

  2. Singla R, Abidi SM, Dar AI, Acharya A (2019) J Biomed Mater Res B: Appl Biomater 107(7):2433

    Article  CAS  Google Scholar 

  3. Shurygina IA, Prozorova GF, Trukhan IS, Korzhova SA, Fadeeva TV, Pozdnyakov AS, Dremina NN, Emelyanov AI, Kuznetsova NP, Shurygin MG (2020) Nanomaterials 10(8):1477

    Article  CAS  PubMed Central  Google Scholar 

  4. Fernández-Ortuño D, Torés JA, de Vicente A, Pérez-García A (2008) Int Microbiol 11(1):1

    PubMed  Google Scholar 

  5. Shcherbakova LA (2019) Sel’skokhozyaistvennaya Biologiya [Agric Biol] 54(5):875

    Google Scholar 

  6. Pobezhimova TP, Korsukova AV, Dorofeev NV, Grabelnych OI (2019) Izvestiya Vuzov. Prikladnaya Khimiya i Biotekhnologiya [Proc Univ. Appl Chem Biotechnol] 9(3):461

    CAS  Google Scholar 

  7. Prozorova G, Kuznetsova N, Shaulina L, Bolgova Y, Trofimova O, Emel’yanov Pozdnyakov AA (2020) J Organomet Chem 916:121273

    Article  CAS  Google Scholar 

  8. Ermakova TG, Shaulina LP, Kuznetsova NP, Ratovskii GV, Soboleva IN, Pozdnyakov AS, Prozorova GF (2012) Russ J Appl Chem 85(8):1289

    Article  CAS  Google Scholar 

  9. Ermakova TG, Shaulina LP, Kuznetsova NP, Volkova LI, Pozdnyakov AS, Prozorova GF (2012) Russ J Appl Chem 85(1):35

    Article  CAS  Google Scholar 

  10. Aslan A, Bozkurt A (2009) J Power Sour 191(2):442

    Article  CAS  Google Scholar 

  11. Dzhardimalieva GI, Uflyand IE (2018) ChemistrySelect 3(46):13234

    Article  CAS  Google Scholar 

  12. Kuznetsova NP, Ermakova TG, Pozdnyakov AS, Emel’yanov AI, Prozorova GF (2013) Russ Chem Bull 62(11):2509

    Article  CAS  Google Scholar 

  13. Pozdnyakov AS, Ivanova AA, Emelyanov AI, Ermakova TG, Prozorova GF (2017) Russ Chem Bull 66(6):1099

    Article  CAS  Google Scholar 

  14. Pozdnyakov AS, Emel’yanov AI, Kuznetsova NP, Ermakova TG, Bolgova YuI, Trofimova OM, Albanov AI, Borodina TN, Smirnov VI, Prozorova GF Synlett (2016) 27(06):900

  15. Prozorova GF, Pozdnyakov AS, Korzhova SA, Ermakova TG, Novikov MA, Titov EA, Sosedova LM (2014) Russ Chem Bull 63(9):2126

    Article  CAS  Google Scholar 

  16. Zezina EA, Emel’yanov AI, Pozdnyakov AS, Prozorova GF, Abramchuk SS, Feldman VI, Zezin AA (2019) Radiation Physi Chem 158:115

    Article  CAS  Google Scholar 

  17. Pozdnyakov AS, Ivanova AA, Emel’yanov AI, Bolgova YuI, Trofimova OM, Prozorova GF (2020) J Organomet Chem 922:121352

    Article  CAS  Google Scholar 

  18. Park JP, Kim SW, Hwang HJ, Yun JW (2001) Lett Appl Microbiol 33(1):76

    Article  CAS  PubMed  Google Scholar 

  19. Davidson CM, Cronin F (1973) Appl Microbiol 26(3):439

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. McCoy RH, Pilcher KS (1974) J Fisher Board Can 31(9):1553

    Article  CAS  Google Scholar 

  21. Essenberg M, Doherty MDA, Hamilton BK, Henning VT, Cover EC, McFaul SJ, Johnson WM (1982) Phytopathol 72(10):1349

    Article  CAS  Google Scholar 

  22. Ming D, Ye H, Schaad NW, Roth DA (1991) Phytopathol 81(11):1358

    Article  Google Scholar 

  23. Bilai VI (ed) (1982) Methods of experimental mycology. Naukova Dumka, Kiev

    Google Scholar 

  24. Bukhalo AS (1988) Higher edible mushrooms in pure cultures. Naukova Dumka, Kiev

    Google Scholar 

  25. Sagdic O, Aksoy A, Ozkan G (2006) Acta Aliment 35(4):487

    Article  Google Scholar 

  26. Yilma AN, Singh SR, Dixit S, Dennis VA (2013) Int J Nanomed 8:2421

    Google Scholar 

  27. Pozdnyakov AS, Emel’yanov AI, Kuznetsova NP, Ermakova TG, Fadeeva TV, Sosedova LM, Prozorova GF (2016) Int J Nanomed 11:1295

    Article  CAS  Google Scholar 

  28. Khurana A, Tekula S, Saifi MA, Venkatesh P, Godugu C (2019) Biomed Pharmacother 111:802

    Article  CAS  PubMed  Google Scholar 

  29. Kumar S, Tomar MS, Acharya A (2015) Coll Surf B: Biointerfaces 126:546

    Article  CAS  Google Scholar 

  30. Ramamurthy CH, Sampath KS, Arunkumar P, Kumar MS, Sujatha V, Premkumar K, Thirunavukkarasu C (2013) Bioprocess Biosyst Eng 36(8):1131

    Article  CAS  PubMed  Google Scholar 

  31. Huang Y, He L, Liu W, Fan C, Zheng W, Wong YS, Chen T (2013) Biomater 34(29):7106

    Article  CAS  Google Scholar 

  32. Wang Z, Jing J, Ren Y, Guo Y, Tao N, Zhou Q, Zhang H, Ma Y, Wang Y (2019) Mater Lett 234:212

    Article  CAS  Google Scholar 

  33. Behera M, Ram S (2014) Appl Nanosci 4(2):247

    Article  CAS  Google Scholar 

  34. Zhang C, Hu Z, Deng B (2016) Water Res 88:403

    Article  CAS  PubMed  Google Scholar 

  35. Alexandridis P (2011) Chem EngTechnol 34(1):15

    CAS  Google Scholar 

  36. Bakshi PS, Selvakumar D, Kadirvelu K, Kumar NS (2020) Int J Biol Macromol 150:1072

    Article  CAS  PubMed  Google Scholar 

  37. Ahmadi Y, Ahmad S (2020) Polym Rev 60(2):226

    Article  CAS  Google Scholar 

  38. Fayaz AM, Balaji K, Girilal M, Yadav R, Kalaichelvan PT, Venketesan R (2010) Nanomed: Nanotechnol Biol Med 6(1):103

    Article  CAS  Google Scholar 

  39. Tao AR, Habas S, Yang P (2008) Small 4(3):310

    Article  CAS  Google Scholar 

  40. Yin B, Ma H, Wang S, Chen S (2003) J Phys Chem B 107(34):8898

    Article  CAS  Google Scholar 

  41. Kvitek L, Panáček A, Soukupova J, Kolar M, Vecerova R, Prucek R, Holecová M, Zboril R (2008) J Phys Chem C 112(15):5825

    Article  CAS  Google Scholar 

  42. Sintubin L, De Windt W, Dick J, Mast J, Van Der Ha D, Verstraete W, Boon N (2009) Appl Microbiol Biotechnol 84(4):741

    Article  CAS  PubMed  Google Scholar 

  43. Chen SF, Zhang H (2012) Nanosci Nanotechnol 3(3):035006

    Google Scholar 

  44. Kennedy AJ, Chappell MA, Bednar AJ, Ryan AC, Laird JG, Stanley JK, Steevens JA (2012) Environ Sci Technol 46(19):10772

    Article  CAS  PubMed  Google Scholar 

  45. Liang Y, Bradford SA, Simunek J, Heggen M, Vereecken H, Klumpp E (2013) Environ Sci Technol 47(21):12229

    Article  CAS  PubMed  Google Scholar 

  46. Zhang Y, Chen Y, Westerhoff P, Crittenden J (2009) Water Res 43(17):4249

    Article  CAS  PubMed  Google Scholar 

  47. Wu H, Li X, Liu W, Chen T, Li Y, Zheng W, Man CWY, Wong MK, Wong KH (2012) J Mater Chem 22(19):9602

    Article  CAS  Google Scholar 

  48. Tsivileva OM, Perfileva AI (2017) Curr Nutr Food Sci 13(2):82

    Article  CAS  Google Scholar 

  49. Tsivileva OM (2019) Theor Appl Ecol (4):6

  50. Zhu C, Zhang S, Song C, Zhang Y, Ling Q, Hoffmann PR, Li J, Chen T, Zheng W, Huang Z (2017) J Nanobiotechnol 15:20

    Article  CAS  Google Scholar 

  51. Wang J, Zhang Y, Yuan Y, Yue T (2014) Food Chem Toxicol 68:183

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the financial support from the Russian Foundation for Basic Research (Project No. 17-38-50055-mol_nr). Research was completed in the framework of the scientific project V.44.1.2 of the program of fundamental research of SB RAS. Fungal metabolites studies were carried out under research theme No. АААА-А17-117102740098-8.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Olga M. Tsivileva.

Ethics declarations

Conflict of interest

The authors clarified that no conflict of interest in this study.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tsivileva, O.M., Perfileva, A.I., Ivanova, A.A. et al. The Effect of Selenium- or Metal-Nanoparticles Incorporated Nanocomposites of Vinyl Triazole Based Polymers on Fungal Growth and Bactericidal Properties. J Polym Environ 29, 1287–1297 (2021). https://doi.org/10.1007/s10924-020-01963-w

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10924-020-01963-w

Keywords

Navigation