Skip to main content
Log in

Chemical Treatment of Lignosulfonates Under DBD Plasma Conditions. I. Spectral Characterization

  • Original Paper
  • Published:
Journal of Polymers and the Environment Aims and scope Submit manuscript

Abstract

A new method for chemical modification of lignin product under dielectric barrier discharge (DBD) plasma at atmospheric pressure is proposed. The motivation of this study is to obtain from ammonium lignosulfonate powder (ALS) and carboxylic acids (oleic acid, OA and lactic acid, LA) and butyrolactone (BL), new products with improved functionalities (ALS-LA, ALS-OA and ALS-BL), which may be used in manufacturing of biocomposite materials. The chemical transformations on the surface of ALS were evaluated by elemental analysis, attenuated total reflectance Fourier transform infrared spectroscopy (ATR-FTIR), near-infrared (NIR) spectroscopy and near-infrared chemical imaging (NIR-CI), as well as nuclear magnetic resonance (1H-NMR and 13C-NMR), UV–VIS and fluorescence spectroscopies. The attachment of the monomeric chains to the macromolecular network of ALS was proved by the values of atomic ratios (C/H, C/O and O/C), calculated from elemental analysis, reveal. The spectral results confirmed that the grafting reaction of ammonium lignosulfonate took place under cold plasma conditions and various compounds with special structures and functionalities have been obtained. Moreover, the recorded NIR-CI images (RGB and PCA components) provide information about ALS product homogeneity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. Denes AR, Tshabalala MA, Rowell R, Denes F, Young RA (1999) Hexamethyldisiloxane-plasma coating of wood surface for creating water repellent characteristics. Holzforshung 53:318–326. https://doi.org/10.1515/HF.1999.052

    Article  CAS  Google Scholar 

  2. Denes AR, Young RA (1999) Reduction of weathering degradation of wood through plasma-polymer coating. Holzforschung 53:632–640. https://doi.org/10.1515/HF.1999.104

    Article  CAS  Google Scholar 

  3. Gurunathan T, Mohanty S, Nayak SK (2015) A review of the recent developments in biocomposites based on natural fibres and their application perspectives. Composites A 77:1–25. https://doi.org/10.1016/j.compositesa.2015.06.007

    Article  CAS  Google Scholar 

  4. Denes F, Young RA, Sarmadi M (1997) Surface functionalization of polymers under cold plasma conditions: a mechanistic approach. J Photopolym Sci Technol 10:91–112. https://doi.org/10.2494/photopolymer.10.91

    Article  CAS  Google Scholar 

  5. Toriz G, Ramos J, Young RA (2004) Lignin-polypropylene composites. II. Plasma modification of kraft lignin and particulate polypropylene. J Appl Polym Sci 91:1920–1926. https://doi.org/10.1002/app.13412

    Article  CAS  Google Scholar 

  6. Schram DC (2002) Plasma processing and chemistry. Pure Appl Chem 74(3):369–380. https://doi.org/10.1351/pac200274030369

    Article  CAS  Google Scholar 

  7. Toriz G, Denes F, Young RA (1999) In: Glasser WG, Northey RA, Schultz TP (eds) Lignin: historical, biological, and materials perspectives, ACS symposium series 742, p p367–389. https://doi.org/10.1021/bk-2000-0742.ch019

  8. Odrasková M, Szalay Z, Ráhel J, Zaharonová A, Cernák M (2008) In: Simek M, Sunka P (eds) Proceedings of the 28th international conference on phenomena in ionized gases, Prague, pp 803–806. https://doi.org/10.1088/0963-0252/17/2/020201

  9. Setoyama K (1996) Surface modification of wood by plasma treatment and plasma polymerization. J Photopolym Sci Technol 9:243–250. https://doi.org/10.2494/photopolymer.9.243

    Article  CAS  Google Scholar 

  10. Asandulesa M, Topala I, Dumitrascu N (2010) Effect of helium DBD plasma treatment on the surface of wood samples. Holzforschung 64:223–227. https://doi.org/10.1515/hf.2010.025

    Article  CAS  Google Scholar 

  11. Branbenburg R (2017) Dielectric barrier discharges: progress on plasma sources and on the understanding of regimes and single filaments. Plasma Sources Sci Trans 26(5):053001. https://doi.org/10.1088/1361-6595/aa6426

    Article  Google Scholar 

  12. Cazacu G, Capraru M, Popa V (2013) Advances concerning lignin utilization in new materials. In: Thomas S, Visakh PM, Mathew AP (eds) Advances in natural polymer: composites and nanocomposites. Springer, Berlin, pp 255–312

    Chapter  Google Scholar 

  13. Cazacu G, Popa VI (2003) Lignin-based blends. In: Vasile C, Kulshreshtha AK (eds) Handbook of polymer blends and composites, vol 4B. Rapra Technology Ltd, Shawbury, pp 565–614

    Google Scholar 

  14. Ouyang XP, Zhang P, Tan MC, Deng YH, Yang DJ, Qiu XQ (2010) Isolation of lignosulfonate with polydispersity index. Chin Chem Lett 21:1479–1481. https://doi.org/10.1016/j.cclet.2010.06.032

    Article  CAS  Google Scholar 

  15. Vishtal A, Kraslawski A (2011) Challenges in industrial applications of technical lignins. BioResources 6:3547–3568

    Article  Google Scholar 

  16. Wu X, Zhang H (2011) Preparation of cement water reducer of modified lignosulfonate. Adv Mater Res 168–170:541–544

    Google Scholar 

  17. Cazacu G, Totolin M, Constantinescu G, Ciolacu D (2007) Natural polymer modification under radio-frequency electrical discharge conditions. J Optoelectron Adv M 9:970–974

    CAS  Google Scholar 

  18. Chirila O, Totolin M, Cazacu G, Dobromir M, Vasile C (2013) Lignin modification with carboxylic acids and butyrolactone under cold plasma conditions. Ind Eng Chem Res 52:13264–13271. https://doi.org/10.1021/ie4015183

    Article  CAS  Google Scholar 

  19. Sahin HT (2009) RF-O2 plasma surface modification of kraft lignin derived from wood pulping. Wood Res 54:103–112

    CAS  Google Scholar 

  20. Titova YV, Stolozenko VG, Maksimov AI (2010) The influence of plasma-solution treatment on the properties of hemp fiber lignin. Surf Eng Appl Elect 46:127–130

    Article  Google Scholar 

  21. Zhou X, Tang L, Zheng F, Xue G, Du G, Zhang W, Lv C, Yong Q, Zhang R, Tang B, Liu X (2011) Oxygen plasma-treated enzymatic hydrolysis lignin as a natural binder for manufacturing biocomposites. Holzforschung 65:829–833. https://doi.org/10.1515/HF.2011.093

    Article  CAS  Google Scholar 

  22. Dence CW, Lin SY (1992). In: Lin SY, Dence CW (eds) Methods in lignin chemistry. Springer, Berlin, pp 3–20

    Chapter  Google Scholar 

  23. Montoneri E, Savarino P, Adani F, Genevini PL, Ricca G, Zanetti F, Paoletti S (2003) Polyalkylphenyl-sulfonic acid with acid groups of variable strength from compost. Waste Manag 23:523–535. https://doi.org/10.1016/S0956-053X(02)00145-9

    Article  CAS  PubMed  Google Scholar 

  24. Gellerstedt G, Henriksson G (2008) Lignins: major sources, structure and properties. In: Belgacem MN, Gandini A (eds) Monomers, polymers and composites from renewable resources. Elsevier, Amsterdam, pp 201–224

    Chapter  Google Scholar 

  25. Struszczyk H (1986) Modification of lignins. III. Reaction of lignosulfonates with chlorophosphazenes. J Macromol Sci Chem 23:973–992. https://doi.org/10.1080/00222338608081105

    Article  Google Scholar 

  26. Kadla JF, Satoshi K (2004) Lignin-based polymer blends: analysis of intermolecular interactions in lignin-synthetic polymer blends. Composites A 35:395–400. https://doi.org/10.1016/j.compositesa.2003.09.019

    Article  CAS  Google Scholar 

  27. Nita LE, Chiriac AP (2012) A combined NIR-CI, SEM, ESEM and X-ray nondestructive examination for the characterization of composite polymeric surfaces. J Nanopart Res 14:795–805

    Article  Google Scholar 

  28. Nistor MT, Chiriac AP, Nita LE, Vasile C (2013) Characterization of the semi-interpenetrated network based on collagen and poly(N-isopropyl acrylamide-co-diethylene glycoldiacrylate). Int J Pharm 452:92–101. https://doi.org/10.1016/j.ijpharm.2013.04.043

    Article  CAS  PubMed  Google Scholar 

  29. Alonso MV, Rodriguez JJ, Oliet M, Rodriguez F, Garcia J, Gilarranz MA (2001) Characterization and structural modification ammonic lignosulfonate by methylolation. J Appl Polym Sci 82:2661–2668. https://doi.org/10.1002/app.2119

    Article  CAS  Google Scholar 

  30. Lundquist K (1992). In: Lin SY, Dence CW (eds) Methods in lignin chemistry. Springer, Berlin, pp 242–249

    Chapter  Google Scholar 

  31. Robert D (1992). In: Lin SY, Dence CW (eds) Methods in lignin chemistry. Springer, Berlin, pp 250–273

    Chapter  Google Scholar 

  32. Xia Z, Akim LG, Argyropoulos DS (2001) Quantitative 13C NMR analysis of lignins with internal standards. J Agric Food Chem 49:3573–3578. https://doi.org/10.1021/jf010333v

    Article  CAS  PubMed  Google Scholar 

  33. Lebo SE, Bråten AM, Fredheim GE, Lutnaes BF, Lauten RA, Myrvold BO, McNally TJ (2008). In: Hu TQ (ed) Characterization of lignosulfoantes materials. Wiley, New York, pp 189–205

    Google Scholar 

  34. Faix O (1992). In: Lin SY, Dence CW (eds) Methods in lignin chemistry. Springer, Berlin, pp 83–108

    Chapter  Google Scholar 

  35. Boeriu CG, Bravo D, Gosselnik RJA, van Dam JEG (2004) Characterisation of structure-dependent functional properties of lignin with infrared spectroscopy. Ind Crop Prod 20:205–218. https://doi.org/10.1016/j.indcrop.2004.04.022

    Article  CAS  Google Scholar 

  36. Rodriguez-Lucena P, Lucena JJ, Hernández-Apaolaza L (2009) In: Proceedings of the international plant nutrition colloquium XVI, eScholarship University of California, Davis. https://escholarship.org/uc/item/9k69q71d

  37. Sahoo S, Seydibeyouğlu MÖ, Mohanty AK, Misra M (2011) Characterization of industrial lignins for their utilization in future value added applications. Biomass Bioenergy 35:4230–4237. https://doi.org/10.1016/j.biombioe.2011.07.009

    Article  CAS  Google Scholar 

  38. Strassberger Z, Prinsen P, van der Klis F, van Es DS, Tanasea S, Rothenberg G (2015) Lignin solubilisation and gentle fractionation in liquid ammonia. Green Chem 17:325–334. https://doi.org/10.1039/C4GC01143K

    Article  CAS  Google Scholar 

  39. Stark NM, Yelle DJ, Agarwal UP (2016). In: Faruk O, Sain M (eds) Lignin in polymer composites. Elsevier, Oxford, pp 49–66

    Chapter  Google Scholar 

  40. Qin I, Yu L, Wu R, Yang D, Qiu X, Zhu JY (2016) Biorefinery lignosulfonates from sulfite-pretreated softwoods as dispersant for graphite. ACS Sustain Chem Eng 4:2200–2205. https://doi.org/10.1021/acssuschemeng.5b01664

    Article  CAS  Google Scholar 

  41. Karlinasari L, Sabed M, Wistara INJ, Purwanto YA (2014) Near infrared (NIR) spectroscopy for estimating the chemical composition of (Acacia mangium Willd.) wood. J Indian Acad Wood Sci 11:162–167. https://doi.org/10.1007/s13196-014-0133-z

    Article  Google Scholar 

  42. Brinkmann K, Blaschke L, Polle A (2002) Comparison of different methods for lignin determination as a basis for calibration of near-infrared reflectance spectroscopy and implications of lignoproteins. J Chem Ecol 28:2483–2501. https://doi.org/10.1023/A:1021484002582

    Article  CAS  PubMed  Google Scholar 

  43. Pu Y, Ragauskas AJ, Lucia LA, Naithani V, Jameel H (2008) Near-infrared spectroscopy and chemometric analysis for determining oxygen delignification yield. J Wood Chem Technol 28:122–136. https://doi.org/10.1080/02773810802125008

    Article  CAS  Google Scholar 

  44. Agarwal UP, Atalla RH (2010). In: Heitner C, Dimmel DR, Schmidt JA (eds) Lignin and lignans: advances in chemistry. CRC Press, Boca Raton, pp 103–136

    Chapter  Google Scholar 

  45. Li X, Sun C, Zhou B, He Y (2015) Determination of hemicelluloses, cellulose and lignin in Moso bamboo by near infrared spectroscopy. Sci Rep 5:17210. https://doi.org/10.1038/srep17210

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. He WM, Hu HR (2013) Rapid prediction of different wood species extractives and lignin content using near infrared spectroscopy. J Wood Chem Technol 33:52–64. https://doi.org/10.1080/02773813.2012.731463

    Article  CAS  Google Scholar 

  47. Alonso MV, Oliet M, Rodriguez F, Garcia J, Gilarranz MA, Rodriguez JJ (2005) Modification of ammonium lignosulfonate by phenolation for use in phenolics resins. Bioresour Technol 96:1013–1018. https://doi.org/10.1016/j.biortech.2004.09.009

    Article  CAS  PubMed  Google Scholar 

  48. Lutnaes FB, Myrvold OB, Lauten RA, Endeshaw MM (2008) 1H and 13C NMR data of benzylsulfonic acids: model compounds for lignosulfonate. Magn Reson Chem 46:299–305. https://doi.org/10.1002/mrc.2184

    Article  CAS  PubMed  Google Scholar 

  49. Lin SY, Dence CW (1992) Functional group analysis. Methods in lignin chemistry (Chap 7). Springer, Berlin, pp 407–472

    Google Scholar 

  50. Imai T, Yokoyama T, Matsumoto Y (2011) Revisiting the mechanism of β-O-4 bond cleavage during acidolysis of lignin IV: dependence of acidolysis reaction on the type of acid. J Wood Sci 57:219–225

    Article  CAS  Google Scholar 

  51. da Costa Lopes AM, Gomes JRB, Coutihno JAP, Silvestre AJD (2020) Novel insights into biomass delignification with acidic deep eutectic solvents; a mechanistic study of β-O-4 ether bond cleavage and the role of the halide counterion in the catalytic performance. Green Chem 22:2474–2487

    Article  Google Scholar 

  52. Hemmilä V, Hosseinpourpia R, Adamopoulos S, Eceiza A (2019) Characterization of wood-based industrial biorefinery lignosulfonates and supercritical water hydrolysis lignin. Waste Biomass Valori. https://doi.org/10.1007/s12649-019-00878-5

    Article  Google Scholar 

  53. Savy D, Cozzolino V, Drosos M, Mazzei P, Piccolo A (2018) Replacing calcium with ammonium counterion in lignosulfonates from paper mills affects their molecular properties and bioactivity. Sci Total Environ 645:411–418

    Article  CAS  Google Scholar 

  54. Deng Y, Feng X, Yang D, Yi C, Qiu X (2012) π-π Stacking of the aromatic groups in lignosulfonates. BioResources 7:1145–1156. https://doi.org/10.15376/biores.7.1.1145-1156

    Article  Google Scholar 

  55. Lekelefac CA, Busse N, Herrenbauer M, Czermak P (2015) Photocatalytic based degradation processes of lignin derivatives. Int J Photoenergy. https://doi.org/10.1155/2015/137634

    Article  Google Scholar 

  56. Jablonský M, Kočiš J, Ház A, Šima J (2015) Characterization and comparison by UV spectroscopy of precipitated lignins and commercial lignosulfonates. Cell Chem Technol 49:267–274

    Google Scholar 

  57. Deng Y, Wu Y, Qian Y, Ouyang X, Yang D, Qiu X (2010) Adsorption and desorption behaviors of lignosulfonate during the self-assembly of multilayers. BioResources 5:1178–1196

    CAS  Google Scholar 

  58. Popescu CM, Vasile C, Popescu MC, Singurel G, Popa VI, Munteanu B (2006) Analytical methods for lignin characterization. II. Spectroscopic studies. Cell Chem Technol 40:598–621

    Google Scholar 

  59. Lu Y, Lu YC, Hu HQ, Xie FJ, Wei XY, Fan X (2017) Structural characterization of lignin and its degradation products with spectroscopic methods. J Spectroscopy. https://doi.org/10.1155/2017/8951658

    Article  Google Scholar 

  60. Todorciuc T, Căpraru AM, Kratochvílová I, Popa VI (2009) Characterization of non-wood lignin and its hydroxymethylated derivatives by spectroscopy and self-assembling investigations. Cell Chem Technol 43:399–408

    CAS  Google Scholar 

  61. Radotić K, Kalauzi A, Djikanović D, Jeremić M, Leblanc RM, Cerović ZG (2006) Component analysis of the fluorescence spectra of a lignin model compound. J Photoch Photobio B 83:1–10. https://doi.org/10.1016/j.jphotobiol.2005.12.001

    Article  CAS  Google Scholar 

  62. Albinson B, Li S, Lundquist K, Stomberg R (1999) The origin of lignin fluorescence. J Mol Struct 508:19–27. https://doi.org/10.1016/S0022-2860(98)00913-2

    Article  Google Scholar 

  63. Lichtentaler HK, Schweiger J (1998) Cell wall bound ferulic acid, the major substance of the blue-green fluorescence emission of plants. J Plant Physiol 152:272–282. https://doi.org/10.1016/S0176-1617(98)80142-9

    Article  Google Scholar 

  64. Huang C, Su Y, Shi J, Yuan C, Zhai S, Yong Q (2019) Revealing the effects of centuries ageing on the chemically structural features of lignin in archaeological fir woods. New J Chem 43:3520–3528

    Article  CAS  Google Scholar 

  65. Djikanović D, Kalauzi A, Jeremić M, Mićić M, Radotić K (2007) Deconvolution of fluorescence spectra: contribution to the structural analysis of complex molecules. Colloid Surf B 54:188–192. https://doi.org/10.1016/j.colsurfb.2006.10.015

    Article  CAS  Google Scholar 

  66. d’Agostino R, Favia P, Fracassi F (1997) Plasma processing of polymers. Kluwer Academic Publishers, London

    Book  Google Scholar 

  67. Acda MN, Devera EE, Cabangon RJ, Pabelina KG, Ramos HJ (2012) Effects of dielectric barrier discharge plasma modification on surface properties of tropical hardwoods at low pressure. J Trop For Sci 24:416–425

    Google Scholar 

  68. Aydin I, Demirkir C (2010) Activation of spruce wood surfaces by plasma treatment after long terms of natural surface inactivation. Plasma Chem Plasma 30:697–706. https://doi.org/10.1007/s11090-010-9244-5

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by a grant of the Romanian National Authority for Scientific Research and Innovation, CNCS/CCCDI-UEFISCDI, project number PNIII-P3-3.6-H2020-2016-0011, within PNCDI III, and by the European Social Fund for Regional Development, Competitiveness Operational Programme Axis 1 – Project “Petru Poni Institute of Macromolecular Chemistry – Interdisciplinary Pole for Smart Specialization Through Research and Innovation and Technology Transfer in Bio(nano)polymeric Materials and (Eco)technology”, InoMatPol (ID P_36_570, Contract 142/10.10.2016).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Diana Ciolacu.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cazacu, G., Chirilă, O., Totolin, M.I. et al. Chemical Treatment of Lignosulfonates Under DBD Plasma Conditions. I. Spectral Characterization. J Polym Environ 29, 900–921 (2021). https://doi.org/10.1007/s10924-020-01926-1

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10924-020-01926-1

Keywords

Navigation