Skip to main content
Log in

Natural and Low-Cost P. turgidum for Efficient Adsorption of Hg(II) Ions from Contaminated Solution: Isotherms and Kinetics Studies

  • Original Paper
  • Published:
Journal of Polymers and the Environment Aims and scope Submit manuscript

Abstract

Mercury (II) ions (Hg(II)), a potent heavy metal water pollutant, was efficiently removed using a novel adsorbent prepared from Panicum turgidum roots by facile drying. The experimental conditions such as the solution pH, temperature, contact time, and Hg(II) ions initial concentration were screened in the adsorption experiment. The results revealed that the P. turgidum-Hg(II) ions adsorption system was promoted by the high density of active sites and the adsorption process is independent of the adsorbent surface area. Hence, maximum adsorption capacity of 333.33 mg/g of Hg(II) ions was achieved at 30 °C. The adsorption experimental data for isotherm and kinetic studies best fitted the Freundlich isotherm and pseudo-first-order model with R2 of 0.985 and 0.991, respectively. The results indicate that P. turgidum can efficiently remove Hg(II) ions from contaminated solutions and a potential wastewater treatment adsorbent.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Yu JG, Yue BY, Wu XW, Liu Q, Jiao FP, Jiang XY, Chen XQ (2016) Removal of mercury by adsorption: a review. Environ Sci Pollut Res 23:5056–5076. https://doi.org/10.1007/s11356-015-5880-x

    Article  CAS  Google Scholar 

  2. Park J, Lee SS (2018) Adsorption of mercury by activated carbon prepared from dried sewage sludge in simulated flue gas. J Air Waste Manag Assoc 1995(68):1077–1084. https://doi.org/10.1080/10962247.2018.1468364

    Article  CAS  Google Scholar 

  3. Marczak M, Budzyń S, Szczurowski J, Kogut K, Burmistrz P (2019) Active methods of mercury removal from flue gases. Environ Sci Pollut Res 26:8383–8392. https://doi.org/10.1007/s11356-018-1772-1

    Article  CAS  Google Scholar 

  4. Yang H, Xu Z, Fan M, Bland AE, Judkins RR (2007) Adsorbents for capturing mercury in coal-fired boiler flue gas. J Hazard Mater 146:1–11. https://doi.org/10.1016/j.jhazmat.2007.04.113

    Article  CAS  PubMed  Google Scholar 

  5. Li B, Li M, Zhang J, Pan Y, Huang Z, Xiao H (2019) Adsorption of Hg (II) ions from aqueous solution by diethylenetriamine pentaacetic acid-modified cellulose. Int J Biol Macromol 122:149–156. https://doi.org/10.1016/j.ijbiomac.2018.10.162

    Article  CAS  PubMed  Google Scholar 

  6. Li Y, Xia M, An F, Ma N, Jiang X, Zhu S, Wang D, Ma J (2019) Superior removal of Hg (II) ions from wastewater using hierarchically porous, functionalized carbon. J Hazard Mater 371:33–41. https://doi.org/10.1016/j.jhazmat.2019.02.099

    Article  CAS  PubMed  Google Scholar 

  7. Amiri MJ, Bahrami M, Dehkhodaie F (2019) Optimization of Hg(II) adsorption on bio-apatite based materials using CCD-RSM design: characterization and mechanism studies. J Water Health 17:556–567. https://doi.org/10.2166/wh.2019.039

    Article  PubMed  Google Scholar 

  8. Fu Y, Sun Y, Chen Z, Ying S, Wang J, Hu J (2019) Functionalized magnetic mesoporous silica/poly(m-aminothiophenol) nanocomposite for Hg(II) rapid uptake and high catalytic activity of spent Hg(II) adsorbent. Sci Total Environ 691:664–674. https://doi.org/10.1016/j.scitotenv.2019.07.153

    Article  CAS  PubMed  Google Scholar 

  9. Jiang J, Wang X (2019) Adsorption of Hg(II) ions from aqueous solution by thiosemicarbazide-modified cellulose adsorbent. BioResources 14:4670–4695

    CAS  Google Scholar 

  10. Mistar EM, Hasmita I, Alfatah T, Muslim A, Supardan MD (2019) Adsorption of mercury(II) using activated carbon produced from bambusa vulgaris var. Striata in a fixed-bed column. Sains Malaysiana 48:719–725. https://doi.org/10.17576/jsm-2019-4804-03

    Article  CAS  Google Scholar 

  11. Boparai HK, Joseph M, O’Carroll DM (2011) Kinetics and thermodynamics of cadmium ion removal by adsorption onto nano zerovalent iron particles. J Hazard Mater 186:458–465. https://doi.org/10.1016/j.jhazmat.2010.11.029

    Article  CAS  PubMed  Google Scholar 

  12. Qi L, Teng F, Deng X, Zhang Y, Zhong X (2019) Experimental study on adsorption of Hg(II) with microwave-assisted alkali-modified fly ash. Powder Technol 351:153–158. https://doi.org/10.1016/j.powtec.2019.04.029

    Article  CAS  Google Scholar 

  13. Fu Y, Jiang J, Chen Z, Ying S, Wang J, Hu J (2019) Rapid and selective removal of Hg(II)ions and high catalytic performance of the spent adsorbent based on functionalized mesoporous silica/poly(m-aminothiophenol) nanocomposite. J Mol Liq 286:110746. https://doi.org/10.1016/j.molliq.2019.04.023

    Article  CAS  Google Scholar 

  14. Saman N, Kong H, Mohtar SS, Johari K, Mansor AF, Hassan O, Ali N, Mat H (2019) A comparative study on dynamic Hg(II) and MeHg(II) removal by functionalized agrowaste adsorbent: breakthrough analysis and adsorber design. Korean J Chem Eng 36:1069–1081. https://doi.org/10.1007/s11814-019-0285-z

    Article  CAS  Google Scholar 

  15. Zabihi M, Haghighi Asl A, Ahmadpour A (2010) Studies on adsorption of mercury from aqueous solution on activated carbons prepared from walnut shell. J Hazard Mater 174:251–256. https://doi.org/10.1016/j.jhazmat.2009.09.044

    Article  CAS  PubMed  Google Scholar 

  16. Zhang S, Yang X, Ju M, Liu L, Zheng K (2019) Mercury adsorption to aged biochar and its management in China. Environ Sci Pollut Res 26:4867–4877. https://doi.org/10.1007/s11356-018-3945-3

    Article  CAS  Google Scholar 

  17. Khanday WA, Ahmed MJ, Okoye PU, Hummadi EH, Hameed BH (2019) Single-step pyrolysis of phosphoric acid-activated chitin for efficient adsorption of cephalexin antibiotic. Bioresour Technol 280:255–259. https://doi.org/10.1016/j.biortech.2019.02.003

    Article  CAS  PubMed  Google Scholar 

  18. Khanday WA, Asif M, Hameed BH (2016) Cross-linked beads of activated oil palm ash zeolite/chitosan composite as a bio-adsorbent for the removal of methylene blue and acid blue 29 dyes. Int J Biol Macromol 95:895–902. https://doi.org/10.1016/j.ijbiomac.2016.10.075

    Article  CAS  PubMed  Google Scholar 

  19. Marrakchi F, Ahmed MJ, Khanday WA, Asif M, Hameed BH (2017) Mesoporous-activated carbon prepared from chitosan flakes via single-step sodium hydroxide activation for the adsorption of methylene blue. Int J Biol Macromol 98:233–239. https://doi.org/10.1016/j.ijbiomac.2017.01.119

    Article  CAS  PubMed  Google Scholar 

  20. Marrakchi F, Auta M, Khanday WA, Hameed BH (2017) High-surface-area and nitrogen-rich mesoporous carbon material from fishery waste for effective adsorption of methylene blue. Powder Technol 321:428–434. https://doi.org/10.1016/j.powtec.2017.08.023

    Article  CAS  Google Scholar 

  21. Heneidy SZ, Waseem M (2007) Rehabilitation of degraded coastal Mediterranean rangelands using Panicum turgidum Forssk. Acta Botanica Croatica 66:161–176

    Google Scholar 

  22. Heneidy SZ, Halmy MW (2009) The nutritive value and role of Panicum turgidum forssk. In the arid ecosystems of the Egyptian desert. Acta Botanica Croatica 68:127–146

    CAS  Google Scholar 

  23. Zakia AA, Ali Z, El-Amier YA, Khan Ikhlas A (2010) A new Neolignan from Panicum turgidum. Nat Prod Commun 1:9–12

    Article  Google Scholar 

  24. Hu M, Tian H, He J (2019) Unprecedented selectivity and rapid uptake of CuS nanostructures toward Hg(II) ions. ACS Appl Mater Interfaces 11:19200–19206. https://doi.org/10.1021/acsami.9b04641

    Article  CAS  PubMed  Google Scholar 

  25. Anbia M, Amirmahmoodi S (2016) Removal of Hg (II) and Mn (II) from aqueous solution using nanoporous carbon impregnated with surfactants. Arab J Chem 9:S319–S325. https://doi.org/10.1016/j.arabjc.2011.04.004

    Article  CAS  Google Scholar 

  26. Ahmed MJ, Okoye PU, Hummadi EH, Hameed BH (2019) High-performance porous biochar from the pyrolysis of natural and renewable seaweed (Gelidiella acerosa) and its application for the adsorption of methylene blue. Bioresour Technol 278:159–164. https://doi.org/10.1016/j.biortech.2019.01.054

    Article  CAS  PubMed  Google Scholar 

  27. Liu X, He C, Yu X, Bai Y, Ye L, Wang B, Zhang L (2018) Net-like porous activated carbon materials from shrimp shell by solution-processed carbonization and H3PO4 activation for methylene blue adsorption. Powder Technol 326:181–189. https://doi.org/10.1016/j.powtec.2017.12.034

    Article  CAS  Google Scholar 

  28. Ahmed MJ, Islam MA, Asif M, Hameed BH (2017) Human hair-derived high surface area porous carbon material for the adsorption isotherm and kinetics of tetracycline antibiotics. Bioresour Technol 243:778–784. https://doi.org/10.1016/j.biortech.2017.06.174

    Article  CAS  PubMed  Google Scholar 

  29. Aziz ASA, Manaf LA, Man HC, Kumar NS (2014) Kinetic modeling and isotherm studies for copper(II) adsorption onto palm oil boiler mill Fly ash (POFA) as a natural low-cost adsorbentes. BioResources 9:336–356. https://doi.org/10.15376/biores.9.1.336-356

    Article  Google Scholar 

  30. Kołodyńska D, Hałas P, Franus M, Hubicki Z (2017) Zeolite properties improvement by chitosan modification—Sorption studies. J Ind Eng Chem 52:187–196. https://doi.org/10.1016/j.jiec.2017.03.043

    Article  CAS  Google Scholar 

  31. Ho YS, McKay G (1999) Pseudo-second order model for sorption processes. Process Biochem 34:451–465. https://doi.org/10.1016/S0032-9592(98)00112-5

    Article  CAS  Google Scholar 

  32. Langergen S, Svenska BK (1907) Zur Theorie der sogenannten Adsorption gelöster Stoffe. Zeitschrift für Chemie und Industrie der Kolloide 2:15. https://doi.org/10.1007/BF01501332

    Article  Google Scholar 

  33. Somera RL, Cuazon R, Kenneth Cruz J, Joy Diaz L (2019) Kinetics and isotherms studies of the adsorption of Hg(II) onto iron modified montmorillonite/polycaprolactone nanofiber membrane. IOP Conf Ser. https://doi.org/10.1088/1757-899X/540/1/012005

    Article  Google Scholar 

  34. Weber WJ, Morris JC, Sanit J (1963) Kinetics of adsorption on carbon from solution. J Sanit Eng Div 89(2):31–38

    Google Scholar 

  35. Tsibranska I, Hristova E (2011) Comparison of different kinetic models for adsorption of heavy metals onto activated carbon from apricot stones. Bulgarian Chem Commun 43:370–377

    CAS  Google Scholar 

  36. Freundlich HMF (1906) über die adsorption in losungen (Adsorption in solution). Z Phys Chem 57:385–490

    CAS  Google Scholar 

  37. Langmuir I (1917) The constitution and fundamental properties of solids and liquids. J Franklin Inst 183:102–105. https://doi.org/10.1016/S0016-0032(17)90938-X

    Article  Google Scholar 

  38. Temkin M, Pyzhev V (1940) Kinetics of ammonia synthesis on promoted iron catalysts. Acta Physicochimica 43(3):327–356

    Google Scholar 

  39. Zhou C, Zhu H, Wang Q, Wang J, Cheng J, Guo Y, Zhou X, Bai R (2017) Adsorption of mercury(ii) with an Fe3O4 magnetic polypyrrole-graphene oxide nanocomposite. RSC Adv 7:18466–18479. https://doi.org/10.1039/c7ra01147d

    Article  CAS  Google Scholar 

  40. Saleh TA (2015) Isotherm, kinetic, and thermodynamic studies on Hg(II) adsorption from aqueous solution by silica- multiwall carbon nanotubes. Environ Sci Pollut Res 22:16721–16731. https://doi.org/10.1007/s11356-015-4866-z

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Hashem.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hashem, A., Sanousy, M.A., Mohamed, L.A. et al. Natural and Low-Cost P. turgidum for Efficient Adsorption of Hg(II) Ions from Contaminated Solution: Isotherms and Kinetics Studies. J Polym Environ 29, 304–312 (2021). https://doi.org/10.1007/s10924-020-01879-5

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10924-020-01879-5

Keywords

Navigation