Skip to main content
Log in

Valorization of Cotton Industry Byproducts in Green Composites with Polylactide

  • Original Paper
  • Published:
Journal of Polymers and the Environment Aims and scope Submit manuscript

Abstract

New sustainable green composites based on polylactide (PLA) and cotton industry byproducts were successfully manufactured by extrusion, and subsequently by conventional injection molding. Cottonseed flour was used as reinforcement filler and modified cottonseed oil (epoxidized and maleinized cottonseed oil, ECSO and MCSO respectively) were used to improve filler-polymer matrix interactions among the interface. Mechanical properties were obtained by standard tensile, flexural, Shore D hardness and impact Charpy tests, while the surface morphology characterization on fractured specimens was carried out by using field emission scanning electron microscopy. Thermal properties were obtained by differential scanning calorimetry and the effect of both cottonseed flour and chemically-modified cottonseed oil was evaluated on dynamic mechanical behavior of the obtained composites. Unlike typical lignocellulosic fillers, 15 wt% cottonseed flour does not lead to more brittle materials due to stress concentration phenomena. In fact, cottonseed flour provides improved toughness and elongation at break (mechanical ductile properties) compared to neat PLA without any other compatibilizer. Addition of both epoxidized and maleinized cottonseed (7.5 wt%) has a positive effect on improving ductile behaviour of composites, thus leading to new green composites with good balance between processability and overall properties. In particular, the impact strength is remarkably improved which plays a key factor in these composites since PLA is, intrinsically, a brittle polymer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data Availability

The raw/processed data required to reproduce these findings cannot be shared at this time as the data also forms part of an ongoing study.

References

  1. Onukwuli DO, Emembolu LN, Ude CN, Aliozo SO, Menkiti MC (2017) Optimization of biodiesel production from refined cotton seed oil and its characterization. Egyptian J Pet 26(1):103–110

    Article  Google Scholar 

  2. Baffes J (2010) Markets for cotton by-products: global trends and implications for african cotton producers. The World Bank, Washington

    Book  Google Scholar 

  3. Knutsen HK, Barregard L, Bignami M, Brueschweiler B, Ceccatelli S, Dinovi M, Edler L, Grasl-Kraupp B, Hogstrand C, Hoogenboom L, Nebbia CS, Oswald IP, Petersen A, Rose M, Roudot A-C, Schwerdtle T, Vleminckx C, Vollmer G, Wallace H, Alexander J, Cottrill B, Mackay K, Chain EPCF (2017) Presence of free gossypol in whole cottonseed. Efsa J 15(7):e04850

    Google Scholar 

  4. Hoda N (2010) Optimization of biodiesel production from cottonseed oil by transesterification using NaOH and methanol. Energy Sources Part A 32(5):434–441

    Article  CAS  Google Scholar 

  5. Song WW, He KB, Wang JX, Wang XT, Shi XY, Yu C, Chen WM, Zheng L (2011) Emissions of EC, OC, and PAHs from cottonseed oil biodiesel in a heavy-duty diesel engine. Environ Sci Technol 45(15):6683–6689

    Article  CAS  PubMed  Google Scholar 

  6. Fombuena V, MD S (2013) Study of the properties of thermoset materials derived from epoxidized soybean oil and protein fillers. J Am Oil Chem Soc 90(3):449–457

    Article  CAS  Google Scholar 

  7. Sanyang ML, Sapuan SM, Jawaid M, Ishak MR, Sahari J (2016) Development and characterization of sugar palm starch and poly(lactic acid) bilayer films. Carbohydr Polym 146:36–45

    Article  CAS  PubMed  Google Scholar 

  8. Perinovic S, Andricic B, Erceg M (2010) Thermal properties of poly(L-lactide)/olive stone flour composites. Thermochim Acta 510(1–2):97–102

    Article  CAS  Google Scholar 

  9. Mukherjee T, Kao N (2011) PLA based biopolymer reinforced with natural fibre: a review. J Polym Environ 19(3):714–725

    Article  CAS  Google Scholar 

  10. Martin O, Averous L (2001) Poly(lactic acid): plasticization and properties of biodegradable multiphase systems. Polymer 42(14):6209–6219

    Article  CAS  Google Scholar 

  11. Lunt J (1998) Large-scale production, properties and commercial applications of polylactic acid polymers. Polym Degrad Stab 59(1–3):145–152

    Article  CAS  Google Scholar 

  12. Molins G, Álvarez MD, Garrido N, Macanás J, Carrillo F (2018) Environmental impact assessment of polylactide (PLA)/chicken feathers biocomposite materials. J Polym Environ 26(3):873–884

    Article  CAS  Google Scholar 

  13. Chiulan I, Frone AN, Brandabur C, Panaitescu DM (2017) Recent advances in 3D printing of aliphatic polyesters. Bioengineering 5(1):2

    Article  PubMed Central  CAS  Google Scholar 

  14. da Silva D, Kaduri M, Poley M, Adir O, Krinsky N, Shainsky-Roitman J, Schroeder A (2018) Biocompatibility, biodegradation and excretion of polylactic acid (PLA) in medical implants and theranostic systems. Chem Eng J 340:9–14

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  15. Lopez-Alba E, Schmeer S, Diaz F (2018) Energy absorption capacity in natural fiber reinforcement composites structures. Materials 11(3):418

    Article  PubMed Central  CAS  Google Scholar 

  16. Patricia Arrieta M, Dolores Samper M, Aldas M, Lopez J (2017) On the use of PLA-PHB blends for sustainable food packaging applications. Materials 10(9):1008

    Article  CAS  Google Scholar 

  17. Tyler B, Gullotti D, Mangraviti A, Utsuki T, Brem H (2016) Polylactic acid (PLA) controlled delivery carriers for biomedical applications. Adv Drug Deliv Rev 107:163–175

    Article  CAS  PubMed  Google Scholar 

  18. Palsikowski PA, Kuchnier CN, Pinheiro IF, Morales AR (2018) Biodegradation in soil of PLA/PBAT blends compatibilized with chain extender. J Polym Environ 26(1):330–341

    Article  CAS  Google Scholar 

  19. Kaseem M, Ko YG (2017) Melt flow behavior and processability of polylactic acid/polystyrene (PLA/PS) polymer blends. J Polym Environ 25(4):994–998

    Article  CAS  Google Scholar 

  20. Bocque M, Voirin C, Lapinte V, Caillol S, Robin J-J (2016) Petro-based and bio-based plasticizers: chemical structures to plasticizing properties. J Polym Sci Part A 54(1):11–33

    Article  CAS  Google Scholar 

  21. Alam J, Alam M, Raja M, Abduljaleel Z, Dass LA (2014) MWCNTs-reinforced epoxidized linseed oil plasticized polylactic acid nanocomposite and its electroactive shape memory behaviour. Int J Mol Sci 15(11):19924–19937

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Prempeh N, Li J, Liu D, Das K, Maiti S, Zhang Y (2014) Plasticizing effects of epoxidized sun flower oil on biodegradable polylactide films: a comparative study. Polym Sci Ser A 56(6):856–863

    Article  CAS  Google Scholar 

  23. Silverajah VSG, Ibrahim NA, Yunus WMZW, Abu Hassan H, Woei CB (2012) A comparative study on the mechanical, thermal and morphological characterization of poly(lactic acid)/epoxidized palm oil blend. Int J Mol Sci 13(5):5878–5898

    Article  CAS  Google Scholar 

  24. Liu H, Zhang J (2011) Research progress in toughening modification of poly(lactic acid). J Polym Sci Part B 49(15):1051–1083

    Article  CAS  Google Scholar 

  25. Fenollar O, Garcia-Sanoguera D, Sanchez-Nacher L, Lopez J, Balart R (2010) Effect of the epoxidized linseed oil concentration as natural plasticizer in vinyl plastisols. J Mater Sci 45(16):4406–4413

    Article  CAS  Google Scholar 

  26. Carbonell-Verdu A, Garcia-Sanoguera D, Jordá-Vilaplana A, Sanchez-Nacher L, Balart R (2016) A new biobased plasticizer for poly(vinyl chloride) based on epoxidized cottonseed oil. J Appl Polym Sci 133(27):43642

    Article  CAS  Google Scholar 

  27. Garcia D, Balart R, Sanchez L, Lopez J (2007) Compatibility of recycled PVC/ABS blends. Effect of previous degradation. Polym Eng Sci 47(6):789–796

    Article  CAS  Google Scholar 

  28. Chieng BW, Ibrahim NA, Then YY, Loo YY (2014) Epoxidized vegetable oils plasticized poly(lactic acid) biocomposites: mechanical, thermal and morphology properties. Molecules 19(10):16024–16038

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  29. Xing C, Matuana LM (2016) Epoxidized soybean oil-plasticized poly(lactic acid) films performance as impacted by storage. J Appl Polym Sci 133(12):8

    Article  CAS  Google Scholar 

  30. Carbonell-Verdu A, Samper MD, Garcia-Garcia D, Sanchez-Nacher L, Balart R (2017) Plasticization effect of epoxidized cottonseed oil (ECSO) on poly(lactic acid). Ind Crops Prod 104:278–286

    Article  CAS  Google Scholar 

  31. Al-Mulla EAJ, Yunus WMZW, Ibrahim NAB, Ab Rahman MZ (2010) Properties of epoxidized palm oil plasticized polytlactic acid. J Mater Sci 45(7):1942–1946

    Article  CAS  Google Scholar 

  32. Juárez D, Ferrand S, Fenollar O, Fombuena V, Balart R (2011) Improvement of thermal inertia of styrene–ethylene/butylene–styrene (SEBS) polymers by addition of microencapsulated phase change materials (PCMs). Eur Polym J 47(2):153–161

    Article  CAS  Google Scholar 

  33. Petchwattana N, Covavisaruch S (2014) Mechanical and morphological properties of wood plastic biocomposites prepared from toughened poly(lactic acid) and rubber wood sawdust (Hevea brasiliensis). J Bionic Eng 11(4):630–637

    Article  Google Scholar 

  34. Ferri JM, Garcia-Garcia D, Montanes N, Fenollar O, Balart R (2017) The effect of maleinized linseed oil as biobased plasticizer in poly(lactic acid)-based formulations. Polym Int 66(6):882–891

    Article  CAS  Google Scholar 

  35. Ferri JM, Garcia-Garcia D, Sanchez-Nacher L, Fenollar O, Balart R (2016) The effect of maleinized linseed oil (MLO) on mechanical performance of poly(lactic acid)-thermoplastic starch (PLA-TPS) blends. Carbohydr Polym 147:60–68

    Article  CAS  PubMed  Google Scholar 

  36. Carbonell-Verdu A, Garcia-Garcia D, Dominici F, Torre L, Sanchez-Nacher L, Balart R (2017) PLA films with improved flexibility properties by using maleinized cottonseed oil. Eur Polym J 91:248–259

    Article  CAS  Google Scholar 

  37. Boronat T, Fombuena V, Garcia-Sanoguera D, Sanchez-Nacher L, Balart R (2015) Development of a biocomposite based on green polyethylene biopolymer and eggshell. Mater Des 68:177–185

    Article  CAS  Google Scholar 

  38. Torres-Giner S, Montanes N, Boronat T, Quiles-Carrillo L, Balart R (2016) Melt grafting of sepiolite nanoclay onto poly (3-hydroxybutyrate-co-4-hydroxybutyrate) by reactive extrusion with multi-functional epoxy-based styrene-acrylic oligomer. Eur Polym J 84:693–707

    Article  CAS  Google Scholar 

  39. Quiles-Carrillo L, Montanes N, Garcia-Garcia D, Carbonell-Verdu A, Balart R, Torres-Giner S (2018) Effect of different compatibilizers on injection-molded green composite pieces based on polylactide filled with almond shell flour. Composites Part B 147:76–85

    Article  CAS  Google Scholar 

  40. Mohanty AK, Misra M, Drzal LT (2002) Sustainable bio-composites from renewable resources: opportunities and challenges in the green materials world. J Polym Environ 10(1–2):19–26

    Article  CAS  Google Scholar 

  41. Liu R, Peng Y, Cao J, Chen Y (2014) Comparison on properties of lignocellulosic flour/polymer composites by using wood, cellulose, and lignin flours as fillers. Compos Sci Technol 103:1–7

    Article  CAS  Google Scholar 

  42. Yussuf AA, Massoumi I, Hassan A (2010) Comparison of polylactic acid/kenaf and polylactic acid/rise husk composites: the influence of the natural fibers on the mechanical, thermal and biodegradability properties. J Polym Environ 18(3):422–429

    Article  CAS  Google Scholar 

  43. Shah BL, Selke SE, Walters MB, Heiden PA (2008) Effects of wood flour and chitosan on mechanical, chemical, and thermal properties of polylactide. Polym Compos 29(6):655–663

    Article  CAS  Google Scholar 

  44. Li X, Zhang S, Zhang X, Xie S, Zhao G, Zhang L (2017) Biocompatibility and physicochemical characteristics of poly(epsilon-caprolactone)/poly(lactide-co-glycolide)/nano-hydroxyapatite composite scaffolds for bone tissue engineering. Mater Des 114:149–160

    Article  CAS  Google Scholar 

  45. Torres-Giner S, Montanes N, Fenollar O, García-Sanoguera D, Balart R (2016) Development and optimization of renewable vinyl plastisol/wood flour composites exposed to ultraviolet radiation. Mater Des 108:648–658

    Article  CAS  Google Scholar 

  46. España J, Samper M, Fages E, Sánchez-Nácher L, Balart R (2013) Investigation of the effect of different silane coupling agents on mechanical performance of basalt fiber composite laminates with biobased epoxy matrices. Polym Compos 34(3):376–381

    Article  CAS  Google Scholar 

  47. Liminana P, Garcia-Sanoguera D, Quiles-Carrillo L, Balart R, Montanes N (2018) Development and characterization of environmentally friendly composites from poly (butylene succinate)(PBS) and almond shell flour with different compatibilizers. Composites Part B 144:153–162

    Article  CAS  Google Scholar 

  48. Pilla S, Gong S, O’Neill E, Rowell RM, Krzysik AM (2008) Polylactide-pine wood flour composites. Polym Eng Sci 48(3):578–587

    Article  CAS  Google Scholar 

  49. Du Y, Wu T, Yan N, Kortschot MT, Farnood R (2014) Fabrication and characterization of fully biodegradable natural fiber-reinforced poly(lactic acid) composites. Composites Part B 56:717–723

    Article  CAS  Google Scholar 

  50. Pfister DP, Larock RC (2010) Thermophysical properties of conjugated soybean oil/corn stover biocomposites. Bioresour Technol 101(15):6200–6206

    Article  CAS  PubMed  Google Scholar 

  51. Carbonell-Verdu A, Bernardi L, Garcia-Garcia D, Sanchez-Nacher L, Balart R (2015) Development of environmentally friendly composite matrices from epoxidized cottonseed oil. Eur Polym J 63:1–10

    Article  CAS  Google Scholar 

  52. Torres-Giner S, Gimeno-Alcañiz JV, Ocio MJ, Lagaron JM (2011) Optimization of electrospun polylactide-based ultrathin fibers for osteoconductive bone scaffolds. J Appl Polym Sci 122(2):914–925

    Article  CAS  Google Scholar 

  53. Ali F, Chang Y-W, Kang SC, Yoon JY (2009) Thermal, mechanical and rheological properties of poly (lactic acid)/epoxidized soybean oil blends. Polym Bull 62(1):91–98

    Article  CAS  Google Scholar 

  54. Quiles-Carrillo L, Blanes-Martinez MM, Montanes N, Fenollar O, Torres-Giner S, Balart R (2018) Reactive toughening of injection-molded polylactide pieces using maleinized hemp seed oil. Eur Polym J 98:402–410

    Article  CAS  Google Scholar 

  55. Petinakis E, Yu L, Edward G, Dean K, Liu H, Scully AD (2009) Effect of matrix-particle interfacial adhesion on the mechanical properties of poly(lactic acid)/wood-flour micro-composites. J Polym Environ 17(2):83–94

    Article  CAS  Google Scholar 

  56. Garcia-Campo MJ, Quiles-Carrillo L, Masia J, Reig-Perez MJ, Montanes N, Balart R (2017) Environmentally friendly compatibilizers from soybean oil for ternary blends of poly(lactic acid)-PLA, poly(epsilon-caprolactone)-PCL and poly(3-hydroxybutyrate)-PHB. Materials 10(11):1339

    Article  PubMed Central  CAS  Google Scholar 

  57. Mauck SC, Wang S, Ding W, Rohde BJ, Fortune CK, Yang G, Ahn S-K, Robertson ML (2016) Biorenewable tough blends of polylactide and acrylated epoxidized soybean oil compatibilized by a polylactide star polymer. Macromolecules 49(5):1605–1615

    Article  CAS  Google Scholar 

  58. Quiles-Carrillo L, Duart S, Montanes N, Torres-Giner S, Balart R (2018) Enhancement of the mechanical and thermal properties of injection-molded polylactide parts by the addition of acrylated epoxidized soybean oil. Mater Des 140:54–63

    Article  CAS  Google Scholar 

  59. Balart JF, Fombuena V, Fenollar O, Boronat T, Sanchez-Nacher L (2016) Processing and characterization of high environmental efficiency composites based on PLA and hazelnut shell flour (HSF) with biobased plasticizers derived from epoxidized linseed oil (ELO). Composites Part B 86:168–177

    Article  CAS  Google Scholar 

  60. Burgos N, Martino VP, Jimenez A (2013) Characterization and ageing study of poly(lactic acid) films plasticized with oligomeric lactic acid. Polym Degrad Stab 98(2):651–658

    Article  CAS  Google Scholar 

  61. Ferrero B, Fombuena V, Fenollar O, Boronat T, Balart R (2015) Development of natural fiber-reinforced plastics (NFRP) based on biobased polyethylene and waste fibers from Posidonia oceanica seaweed. Polym Compos 36(8):1378–1385

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work received funding from the Ministry of Economy and Competitiveness (MINECO) (Grant No. MAT2017-84909-C2-2-R). A. Carbonell-Verdu wants to thank Universitat Politècnica de València for financial support through an FPI grant. L. Quiles-Carrillo wants to thank Spanish Ministry of Education, Culture, and Sports (MECD) for financial support through an FPU Grant (FPU15/03812).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. Quiles-Carrillo.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Carbonell-Verdu, A., Boronat, T., Quiles-Carrillo, L. et al. Valorization of Cotton Industry Byproducts in Green Composites with Polylactide. J Polym Environ 28, 2039–2053 (2020). https://doi.org/10.1007/s10924-020-01751-6

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10924-020-01751-6

Keywords

Navigation